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Assembly and Validation of the
Genome of the Nonmodel Basal
Angiosperm Amborella
Srikar Chamala,1* Andre S. Chanderbali,1,2* Joshua P. Der,3 Tianying Lan,4 Brandon Walts,1
Victor A. Albert,4 Claude W. dePamphilis,3 Jim Leebens-Mack,5 Steve Rounsley,6
Stephan C. Schuster,7,8,9 Rod A. Wing,10,11 Nianqing Xiao,12 Richard Moore,12 Pamela S. Soltis,2,13
Douglas E. Soltis,1,2,13 W. Brad Barbazuk1,13†

Genome sequencing with next-generation sequence (NGS) technologies can now be applied to
organisms pivotal to addressing fundamental biological questions, but with genomes previously
considered intractable or too expensive to undertake. However, for species with large and
complex genomes, extensive genetic and physical map resources have, until now, been required to
direct the sequencing effort and sequence assembly. As these resources are unavailable for most
species, assembling high-quality genome sequences from NGS data remains challenging. We
describe a strategy that uses NGS, fluorescence in situ hybridization, and whole-genome mapping
to assemble a high-quality genome sequence for Amborella trichopoda, a nonmodel species
crucial to understanding flowering plant evolution. These methods are applicable to many other
organisms with limited genomic resources.

Amborella (1, 2) has been identified as
the single sister species to all other living
angiosperms and is a pivotal reference for

comparison to other angiosperms (3). However,
Amborella is not a genetic model and has no exist-
ing genetic map, genetic resources, or genome
sequence. Although next-generation sequencing
(NGS) provides deep genomic sequence cover-
age at low cost, short-read assembly remains
difficult, and assessing assembly accuracy is prob-
lematic without independently derived genomic
maps. We produced a whole-genome assembly
for Amborella from a mixed data set of 454,
Illumina, and Sanger bacterial artificial chromo-
some (BAC)–end sequences, evaluated the as-
sembly using fluorescence in situ hybridization
(FISH), and improved contiguity using whole-
genome mapping. FISH has broad utility (4), but
has not been used in de novo genome assembly.
Likewise, whole-genomemapping has been used

to assemble bacterial genomes (5, 6), but has
only recently been applied to complex genomes
of model organisms (7, 8) to assist with scaf-
folding and correction of well-advanced genome
assemblies.

More than 23 Gb of quality-filtered (9) DNA
sequence comprising single-end (SE) 454-FLX, SE
454-FLX+ reads, 11-kb paired-end (PE) 454-FLX,
3-kb PE Illumina HiSeq, and Sanger-sequenced
BAC-end reads (10)were combined and assembled
(table S1). Assembly (9) resulted in 5745 scaffolds
totaling 706 Mb (table S5) with a mean scaffold
size of 123 kb and anN50 size of 4.9Mb, and N90
scaffold metrics that indicate that 90% of our
assembled sequence resides within 155 scaffolds
greater than 1.1 Mb in length (table S5).

Flow cytometry was used to estimate the size
of the Amborella genome at ~870Mb (11), while
our sequence-based size assessments (9, 10, 12, 13)
suggest that the Amborella genome size is closer

to 748 Mb. Our high-quality sequence represents
an average depth of coverage of ~31×, and the
assembly covers >94% of the genome.

Long contig and scaffold assemblies are re-
quired to understand genome structure, enable gene
identification, and support subsequent comparative,
structural, and population genomics studies. We
sought long continuous stretches of assembled
sequence that represent all, or a major fraction of,
the Amborella genome. Coverage of two finished
BAC contigs (10) by assembled sequence contigs
suggests that these two regions were faithfully
represented in the assembly (figs. S9 and S10) (9),
and all 155 of our N90 scaffolds incorporate phys-
ically mapped BAC-end sequences.

The accuracy of the genome assembly was
further assessed by FISH analysis (9). BACs as-
sembled in 104 scaffolds containing 430Mb (68%)
of the genome assembly were cytogenetically lo-
calized by FISH to assess scaffold integrity (Fig. 1,
fig. S11, and table S8). This analysis confirmed
contiguity across major regions (56%) of 66 scaf-
folds containing 306 Mb (44%) of the genome
assembly. Notably, co-assembled BACs that were
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cytogenetically mapped to different chromosomes
indicated potential misassemblies in only two scaf-
folds (table S8). A karyotyping cocktail differen-
tially labeled all 13 Amborella chromosome pairs
and anchored major sections of 35 FISH-validated
scaffolds to the karyotype (Fig. 2). In total, the
cytogenetic cocktail directly placed 101 Mb (58%)
of scaffolds with a total length of 176 Mb (~25%)
of the assembly onto chromosomes (table S8).How-
ever, multiple BACs from 37 scaffolds containing

154Mb produced inconclusive genome-wide cen-
tromeric signals. Sequence alignments associated
with the promiscuous probes indicate extensive
sequence similarity and the presence of tandem
repeats associated with the centromeric regions of
the Amborella chromosomes.

Despite the extensive contiguity of the current
draft assembly, gaps remain. Rather than construct-
ing additional PE libraries to improve contiguity,
a gap closure method based on whole-genome (for-
merly optical) mapping technologywas undertaken
in collaboration with OpGen, Inc. (Gaithersburg,
MD, USA).Whole-genomemapping (14, 15) per-
mits assembly of whole-genome restriction endo-
nuclease maps by digesting immobilized DNA
molecules and determining the size and order of
fragments.

We compared assembled scaffold sequences
to single-molecule restriction maps generated with
Amborella genomic fragments to identify potential
joins and produce superscaffolds (9) (table S10).
This improved our original assembly by a 2×
increase in both N50 (4.9 to 9.3Mb) and N90 (1.2
to 2.9Mb) (table S5). Thirty joins were confirmed
through a new assembly constructed after adding
an additional 454 PE sequences and improving
data filtering, and 20 joins were confirmed by
FISH (9) (table S10).

The Amborella assembly, as well as several
recent plant whole-genome draft sequences
(13, 16, 17), benefited from available collections
of BAC-end sequences (10) that serve as very
long (>150 kb) PE libraries. However, BAC clone

resources are expensive and time-consuming to
construct and evaluate, as is end-sequencing by
low-throughput and high-cost Sanger sequencing.
Therefore, as improvement in NGS technologies
enables more nonmodel eukaryote whole-genome
sequence projects, it is important to identify meth-
ods that permit long, accurate assemblies in the
absence of large-insert clone resources. Superscaf-
folding facilitated by Genome-Builder can substi-
tute for BAC-end sequences, as illustrated by our
construction of an Amborella assembly (9) (tables
S11 to S13). Although BACs were used as FISH
probes in this study, they are not required for cy-
togenetic validation of an assembly; alternatively,
probes could be developed using polymerase chain
reaction amplification. Thus, sequencing is no longer
a limiting factor, and the greatest challenge for
many organisms will be accurate and highly con-
tiguous genome assembly. A combination of FISH
and whole-genome mapping, in concert with se-
quence filtering and assembly strategies described
here, should prove successful even for genomes
with a more complex repeat structure than that of
Amborella.
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Fig. 1. FISH support of scaffold 7. Two BACs,
AT_SBa0003A05 (green) and AT_SBa0003H23 (red),
localize 8.2 Mb apart within the assembly scaffold 7
(9.5 Mb). Their colocalized FISH signals unambigu-
ously support the assembly contained between their
positional coordinates. Secondary green signals rep-
resent repetitive elements in AT_SBa0003A05.

Fig. 2. FISH karyotype for A. trichopoda. BAC probes differentially label all chromosome pairs (one
pair distinguished by the lack of fluorescent signal) and anchor 35 scaffolds (176 Mb) to the karyotype.
Uniquely labeled chromosomes in the cytogenetic preparation (center) are arranged into homologous
pairs (upper panel). Chromosomal assignments and sizes of cytogenetically localized scaffolds are
tabulated.
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