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Abstract—Multiple sequence alignment is typically the first step in estimating phylogenetic trees, with the assumption being that as

alignments improve, so will phylogenetic reconstructions. Over the last decade or so, new multiple sequence alignment methods have

been developed to improve comparative analyses of protein structure, but these new methods have not been typically used in

phylogenetic analyses. In this paper, we report on a simulation study that we performed to evaluate the consequences of using these

new multiple sequence alignment methods in terms of the resultant phylogenetic reconstruction. We find that while alignment accuracy

is positively correlated with phylogenetic accuracy, the amount of improvement in phylogenetic estimation that results from an

improved alignment can range from quite small to substantial. We observe that phylogenetic accuracy is most highly correlated with

alignment accuracy when sequences are most difficult to align, and that variation in alignment accuracy can have little impact on

phylogenetic accuracy when alignment error rates are generally low. We discuss these observations and implications for future work.

Index Terms—Simulation, biology and genetics, multiple protein sequence alignment, phylogeny reconstruction.
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1 INTRODUCTION

MULTIPLE sequence alignment (MSA) is an important
computational problem that is fundamental to all

sequence-based comparative analyses. In particular, appli-
cations of alignment estimation to problems in protein
sequence analysis (structure, function, and subfamily
identification) have led to many new protein alignment
methods. Structural alignment databases, such as STAMP
[1], SCOP [2], [3], HOMSTRAND [4], BaliBASE [5], [6], [7],
and PREFAB [8], have been compiled to serve as bench-
marks for developing and refining MSA methods. Refer-
ence alignments are also commonly derived through
simulations of sequence evolution [9], [10], [11], [12].
Comparative studies based upon these benchmarks and
simulations have concluded that many of the newer MSA
methods, especially those designed for protein alignment
(MAFFT [13], ProbCons [14], T-Coffee [15], Di-Align [16],
Opal [17], Prank [18], AMAP [19], ProbAlign [20], and
others), are substantially better than earlier ones including
Clustal [21], in that they achieve higher alignment accuracy

scores on these benchmarks. Among these newer methods,
MAFFT and ProbCons are consistently among the best
performing [22], [23], [24], [25].

These studies have implications for phylogenetic ana-
lyses, as the common wisdom is that alignment strategy can
impact phylogeny estimation. For example, Morrison and
Ellis [26] found that the choice of multiple sequence
alignment method had a greater impact on the resultant
phylogeny than the choice of phylogeny estimation method,
and Wong et al. [27] showed that with high sequence
divergence, different alignment strategies can produce
alignments that yield conflicting gene trees.

Studies of the impact of alignment estimation on
phylogeny estimation have also been performed using
simulations of sequence evolution that include insertions,
deletions (jointly referred to as “indels”) as well as substitu-
tions [20], [28], [29], [30]. These studies have generally (but
not always) shown that alignment estimation can have an
impact on phylogeny estimation, and have suggested that
under some circumstances, alignment accuracy correlates
with phylogenetic accuracy. Unfortunately, each of these
studies evaluated a limited set of MSA methods, phylogeny
reconstruction methods, and models of sequence evolution.
For example, Roshan and Livesay [20], [31] aligned simu-
lated DNA sequences using six MSA methods (ClustalW
[21], MUSCLE [8], and four methods developed the authors
that use MUSCLE in different ways) and performed
maximum parsimony analsyes. Their main objective was to
see if their new MSA methods provided an improvement in
phylogenetic estimation when followed by a maximum
parsimony analysis. Their simulation study (performed on
large model trees containing from 100 to 400 taxa) showed
that their new methods provided a very modest improve-
ment (about one percent) in phylogenetic accuracy, as
measured using the Robinson-Foulds score [32], over the
best of the other alignment methods. They also observed that
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maximum parsimony trees computed on ClustalW align-
ments were generally as good as (and sometimes better than)
maximum parsimony trees computed on Muscle alignments.
Finally, a comparison of the entire set of parsimony trees
(each based upon a different MSA method) showed that the
choice of MSA method does impact the topological accuracy
of phylogenetic trees. However, there are several limitations
to this study: the focus on maximum parsimony for
phylogeny estimation, the failure to include MAFFT or one
of the other recently developed methods which has been
shown to outperform ClustalW, and the lack of information
on alignment error rates. Therefore, the results of this study
do not provide a comprehensive understanding of the
impact of alignment error on phylogeny estimation.

Ogden and Rosenberg [30] examined the impact of
alignment error on phylogeny reconstruction. They per-
formed a DNA sequence simulation study and examined
the performance of phylogeny reconstruction methods
applied to ClustalW alignments on small (16 taxon) trees.
They explored all the most commonly used phylogeny
reconstruction methods including neighbor joining (NJ),
maximum parsimony (MP), maximum likelihood (ML), and
Bayesian inference (BI), thus enabling them to make
inferences about the impact of alignment error for many
phylogeny reconstruction methods. They concluded that
statistical methods (ML and BI) provide the best estimations
of phylogenies, but their main focus was on two other
issues: the impact of model tree shape on alignment error,
and the impact of alignment error on phylogeny reconstruc-
tion accuracy. Comparisons revealed that pectinate trees
produced the largest alignment error compared to other
shapes, and that NJ was impacted the most by alignment
error, whereas MP was least sensitive to alignment error,
and ML and BI were intermediate in this regard. These are
interesting results, but general inferences are significantly
limited by the restriction to ClustalW alignments and the
small (16 taxon) model trees.

Hall [29] performed a simulation study to look at the
impact of MSA choice on phylogeny reconstruction, but had
a different objective than the Ogden and Rosenberg and the
Roshan and Livesay studies. Rather than comparing
standard MSA methods, Hall focused on how the choice
of data (protein or DNA coding sequence) as well as
alignment method impacted accuracy. Hall used his own
software to simulate the evolution of a coding sequence,
aligned the sequences (in some cases first translating the
coding sequences into amino acid sequences), and then
constructed phylogenies. This study used all the standard
phylogeny reconstruction methods, so it provides a
comparison between phylogeny reconstruction methods
for various fixed MSA methods. However, only a few MSA
methods were compared: Clustal-X with parameters set for
codons or protein sequences, and routines for mapping
nucleotides onto amino acid sequences. The study con-
cluded that statistical methods for phylogeny estimation
based upon DNA aligned using codon-models outper-
formed other two-phase approaches. A careful look at the
data shows that the choice of MSA approach definitely
impacts the phylogeny estimation in some cases, but not all.
The cases where the MSA method had the most impact

were those where the phylogenetic accuracy was quite poor
for one or more alignments. However, Hall only analyzed
small data sets (up to 16 taxa), and provided no analysis of
overall alignment accuracy (although alignment “quality”
scores, calculated by Clustal-X, were reported).

The final simulation study relevant to this work was
performed by Cantarel et al. [28]. Protein sequence
evolution were simulated on 16 taxon model trees in order
to understand the impact of model condition upon
alignment and phylogeny accuracy. The main observation
from this study is that the accuracy of sequence alignments
(as estimated by T-Coffee) and trees (estimated in several
ways) both degrade with evolutionary distance. However,
true alignments produced better trees only than estimated
alignments only for the hardest model conditions (many
substitutions and indels on each edge), and estimated
alignments sometimes yielded better trees for the easier
model conditions.

In summary, these studies suggest that improvements in
phylogenetic accuracy can be obtained through improving
alignments, but sometimes the improvement is small, and
sometimes there is no improvement at all. Even if we
believe improving the alignment should help phylogeny
estimation, we cannot predict how much of a difference it
will make. Furthermore, these studies were relatively
narrow in scope: with the exception of the study by Roshan
and Livesay, all looked only at small model trees, and most
did not consider the top performing MSA methods, such as
MAFFT or ProbCons. Therefore, the impact of the newer
MSA methods on phylogeny estimation is still unclear.

This paper will address several questions related to the
impact of these newer MSA methods on phylogeny
estimation, including:

1. How do the different MSA methods influence the
accuracy of the phylogenies estimated on inferred
alignments? Does an improvement in alignment
accuracy yield an improvement in phylogenetic
accuracy? If so, how strongly are these measures
correlated, and does the impact depend upon
specific model parameters?

2. Do different phylogeny reconstruction methods
respond differently to errors in multiple sequence
alignments? Also, which phylogeny reconstruction
methods produce the most accurate phylogenies,
given highly accurate alignments?

We will also seek to make informed recommendations
about the best MSA and phylogeny estimation procedures
when working with amino acid sequences and the objective
is accuracy in the reconstructed phylogeny.

2 METHODS

2.1 Overview

We used simulated data in this paper instead of real
sequences for several reasons. First, we wanted to be able to
quantify error in phylogeny estimations, and while some
biological data sets have highly reliable curated alignments,
there are no comparably reliable phylogenies for these data
sets (in particular, species trees may differ from the gene
trees, and estimated gene trees may differ from true gene
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trees, even if based upon the true alignment). A second
reason is that the use of simulated data allows us to explore
a wide range of data set conditions, whereas biological data
sets for which curated alignments are available are much
more limited, and the alignments are often short.

Amino acid sequence evolution was simulated so we
could include ProbCons (one of the two “best” MSA
methods), which had only been developed for amino acid
alignment. Our simulations included amino acid substitu-
tions and indels evolving at various rates on model trees
ranging from small (approximately 20-30 taxa) to large
(100 taxa). We aligned sequences using eight alignment
methods, and evaluated accuracy by comparing the align-
ments to the true alignment; trees were constructed on each
alignment (including the true alignment) using six phylo-
geny reconstruction methods, and accuracy evaluated by
comparing the estimated trees to the true tree. The rest of
this section provides a brief summary of the simulation
experiments. For the complete description of simulation
model conditions, please see Online Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.68.

2.2 Sequence Alignment Methods

The MSA methods we explored included new MSA methods
that have been shown to produce the best alignments on the
benchmark data sets, as well as the standard methods used
by the phylogenetic research community. Thus, we included
MAFFT (version 5.861 [13]), PROBCONS (version 1.1 [14]),
MUSCLE (version 3.6 [8]), DIALIGN (version 2.2 [16]), POA
(version 2 [33]), T-COFFEE (version 4.45 [15]), ClustalW
(version 1.83 [21]), and DBClustal (version 1 [34]). The
settings used for each MSA program are given in the Online
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB. 2009.68.

2.3 ROSE Simulations of Protein Sequence
Evolution

We simulated amino acid sequence evolution on model trees
using a modified version of ROSE [11] (see Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TCBB.
2009.68, for our modifications), which allows sequences to
evolve under fairly general site substitution models, as well
as with insertions and deletions of strings of amino acids.
The input to ROSE is a model tree with branch lengths, and
the simulation settings including sequence length, marginal
distribution of amino acid frequencies at the root of the
model tree, substitution model, the insertion/deletion
(indel) length distribution, and the indel rates relative to
the point substitution events. We chose ROSE as the
sequence simulator for two reasons: it is open source (which
allowed us to modify the code to output actual internal node
sequences, and figure out details on the Markovian model
for amino acid sequence evolution implemented in ROSE),
and it is quite flexible with many adjustable parameters.

We modified ROSE to report the true multiple sequence
alignment as well as the full indel history—that is, not only
the sequence at every node (internal as well as leaf) of the
model tree, but also the true pairwise alignment on every

edge. This output also allows us to identify the edges of the
model tree that lacked substitutions or indels, which are then
collapsed in order to produce the “true tree.” Note although
the model tree is always bifurcating, that the realized true
tree will not be bifurcating when there are zero edge lengths.
We compute topological error rates for estimated trees by
comparing them to the realized true trees.

We performed two experiments using the modified
ROSE code. The first simulated sequence evolution on
model trees based upon some BaliBASE2 (http://bips.
ustrasbg.fr/fr/Products/Databases/BAliBASE2/) data
sets with 19 to 28 protein sequences, with parameter
settings based upon these data sets. For the second
experiment, we examined larger model trees, from 25 to
100 proteins, and with higher rates of substitutions and
indels. Some parameters of the simulation process were
held constant (see Online Appendix C, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.68) across
all the experiments: we used the Dayhoff 250 PAM matrix
[35] as the point substitution probability matrix, and we
used one gap length distribution for all the experiments.
This gap length distribution was based upon the average
of the gap length distributions of the BaliBASE data sets
we used for our first experiment, which had an average
gap length of approximately 3.4 residues. Except for these
two parameters (substitution matrix and gap length
distribution), no other parameters were held constant in
our experiments.

2.4 Phylogenetic Reconstruction Methods

We studied six phylogeny reconstruction methods: three
variants of maximum parsimony implemented within
PAUP* [36], two variants of neighbor joining also
implemented within PAUP*, and RAxML [37], a fast
method for estimating maximum likelihood trees. The
commands we used for each of these methods are given in
the online supplemental Appendix D, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2009.68.

For NJ analyses, the substitution model was based on the
PAM 250 matrix [35] and we used Protdist in PHYLIP [38]
to compute the distance matrix. Distances were estimated
for the NJ analyses using both pairwise and complete
deletion of gapped columns [39]. NJ trees were then
calculated using PAUP*. For RAxML analyses, we invoked
the PAM 250 substitution model by specifying the
PROTCATDAYHOFF option, and we ran RAxML in its
default setting.

We performed several different maximum parsimony
analyses, varying how we treated gaps, how we weighted
the substitutions, and the heuristic we used to search for
MP trees. For the gap treatment, we did an initial
exploration on the BaliBASE model trees, and observed
that treating the gaps as missing data produced slightly
better results than treating the gaps as an extra state (data
not shown). We explored three ways of weighting the
substitutions: one in which all substitutions have the same
cost (i.e., unweighted), one in which the amino acid
substitution cost is based upon the minimum number of
nucleotide substitutions needed (i.e., substitution-count
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weighted), and one using the PAM250 substitution matrix.
Finally, we used two different heuristics for the parsimony
analyses, depending upon the data set size.

2.5 Performance Assessment

For each alignment and phylogenetic tree constructed, we
recorded the alignment error and phylogenetic tree error as
follows: We used the Lobster package [8] to score each
alignment we computed using three accuracy measures:
column accuracy (TC, i.e., the percentage of correctly aligned
columns of residues in the inferred alignment), sum-of-pairs
(SP accuracy, i.e., the percentage of correctly aligned pairs of
residues in the inferred alignment), and Cline Shift (CS,
which reflects the total of the shift lengths between the
sequences [40]). The alignment error rates are calculated by
subtracting the accuracy measure from 100 percent. We
scored each phylogenetic reconstruction using the False
Negative (FN) rate, also known as the “Missing Edge Rate,”
which is the percentage of the edges in the true tree that are
missing in the reconstructed tree. We use this measure
instead of the normalized Robinson-Foulds (RF) distance
[32], since the Robinson-Foulds distance is inappropriate for
evaluating estimated trees when trees may not be binary
[41]. However, when the estimated trees are binary, then the
FN rate and the normalized RF distance are the same. (A
summary of the measurements is given in Online
Appendix E, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68, which also shows the False Positive
(FP) rate, which is the percentage of the estimated tree’s
edges that do not appear in the true tree.)

2.5.1 Experiment 1: Simulation Study Using Model

Trees Based on a BAliBASE Subset

In the first experiment, we explored performance on model
trees defined so as to reproduce the properties of selected
BaliBASE data sets. For this experiment, we simulated
alignments based on 12 BAliBASE2, Reference 3 data sets,
which included 19 to 28 sequences per alignment (http://
bips.ustrasbg.fr/en/Products/Databases/BAliBASE2/
align_index.html#ref3). For each data set, we first estimated
an evolutionary tree using a maximum likelihood phylo-
geny estimator, PhyML [42], on the reference alignment for
the data set. This produced a tree topology and branch
lengths specific to the model that were used in subsequent
simulations. See Table 1 for a summary of simulation
settings. The estimated trees are included in Online

Appendix F, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68.

For each model tree, we set the simulation parameters to
produce sequences having the same empirical properties as
we estimated for the complete structural alignments for the
reference data set for that model tree. We computed the
indel rate and gap length distribution for each model using
the lambda.pl script distributed with the DAWG sequence
simulation software [9]. These parameters were used as run
parameters for the modified ROSE software, and the model
tree diameters were scaled so the sequences having the same
average p-distance as the empirical data sets (Appendix H,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TCBB.
2009.68). These model trees produced data sets with varying
properties, so that the maximum p-distances varied from
0.58 to 0.80, and the percentage of the true alignment matrix
that was gapped varied from 11 to 35 percent. For each of
the 12 model trees, we generated 80 data sets, and compared
performance of the eight MSA methods and six phylogeny
reconstruction methods described above. The parameter
estimation procedure is described in detail in the Online
Appendix G, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68.

2.5.2 Experiment 2: Varying Taxon Number and

Alignment Lengths

In the second experiment, we examined the performance of
two-phase methods on larger model trees having from 25 to
100 sequences, and with a wider range of evolutionary
rates, thus producing a wider range of maximum p-
distances and gappiness. For this experiment, we examined
three representative MSA methods (ClustalW, MAFFT, and
POA) and three phylogeny reconstruction methods
(weighted MP using the PAM250 transition matrix, NJ with
pairwise deletion, and RAxML). MAFFT was included since
it is one of the top two MSA methods (the other being
ProbCons). ClustalW was selected since it is the most
commonly used MSA method in phylogenetic studies, and
POA was selected since it was the worst performing in
Experiment 1.

We generated pure-birth model trees using r8s [43] with
25, 50, and 100 taxa. The branch lengths of each model tree
were modified so as to deviate (slightly) from the strong
molecular clock as follows: for a given edge in the tree, we
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selected a random number x from [�ln 1:5, ln 1.5], and
multiplied the branch length by exp(x). We then rescaled the
tree to produce the desired maximum evolutionary distance
(also called the “tree diameter”) of 1, 2, 3, 4, or 6 expected
substitutions per site. We then used ROSE to simulate
evolution with two different initial sequence lengths (150 or
300), two different indel rates (0.0025 and 0.01), and with the
same gap length distribution as we used in the first
experiment; please see Table 2. In total, we had 60 model
conditions (five evolutionary diameters, two indel rates, two
sequence lengths, and three numbers of taxa), and we
generated 50 data sets for each model condition. The data
sets we generated had maximum p-distances that ranged
from 59 to 97 percent and gappiness, measured as the
proportion of cells in the alignment matrix, ranged from 4 to
54 percent (Appendix I, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2009.68). Each data set was aligned using
the three MSA methods listed above (MAFFT, ClustalW, and
POA) and the true alignment. Trees were constructed using
three phylogeny reconstruction methods (PAMwMP, NJ-pw,
and RAxML) on each of the alignments.

We have made the simulated trees and alignments in
Experiments 1 and 2 available online at http://people.pcbi.
upenn.edu/~lswang/alignexp/.

3 RESULTS

These two experiments explored different parts of model
tree space, with Experiment 1 focusing on small model trees
based upon BaliBASE data sets, and Experiment 2 exploring
larger trees (25-100 taxa), with a greater range of substitu-
tion rates and indel rates. In the first experiment, we
examined the full set of multiple sequence alignment tools,
but in the second experiment, we limited our attention to a
subset of these tools.

3.1 Experiment 1: Analysis of BALIBASE Model
Trees

This experiment involved simulations on 12 different model
trees, each based upon one of the 12 BaliBASE data sets (see
the Methods section). While absolute performance varied

between the different model conditions, the relative perfor-
mance was quite consistent. These trends are evident in the
results for three of the 12 model trees (Fig. 1). The results on
all 12 model trees can be seen in the companion Website
(http://people.pcbi.upenn.edu/~lswang/alignexp/).

The results of these analyses revealed the best perform-
ing approach for each phylogeny reconstruction method, in
terms of treatment of gaps, pruning data sets, etc. We
observed that pruning data sets to eliminate sites with
more than 50 percent gapped positions did not improve the
accuracy of the phylogenies constructed using any of the
phylogeny reconstruction methods (data not shown). For
neighbor joining, we observed that computing the distance
matrix using pairwise deletion yielded slightly better
results than computing the distance matrix using complete
deletion of all gapped columns.

The study also revealed differences in performance
between different phylogeny reconstruction methods.
PAM-weighted maximum parsimony performed better in
our experiments than unweighted MP and weighting by the
number of nucleotide substitutions required to transition
from one amino acid to another. RAxML produced the most
accurate phylogenies on the true alignments and the
greatest variance in phylogenetic accuracy among align-
ments (Figs. 1c, 1d, and 1e).

We observed that while MSA methods varied with
respect to alignment accuracy whether measured using SP,
TC, or Cline Shift scores on these data sets, the relative
performance was largely consistent among treatments
(Fig. 1), and indicated three clearly defined levels of
performance among the MSA programs. The top group
consisted of MAFFT, ProbCons, T-Coffee, and Muscle, in
that order, though MAFFT and ProbCons were very close
in performance. The next group consisted of DBClustal,
ClustalW, and then Di-Align, also roughly in that order.
Finally, POA performed the worst.

We then turned to considering the relative sensitivity to
alignment error for each of the phylogeny estimation
methods. We observed that (Figs. 1c, 1d, and 1e) of all the
phylogeny reconstruction methods, NJ seems to vary
the least between different alignments, and ML the most.
The most interesting observation, however, was that
although the improvement in phylogenetic accuracy is
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statistically significant, the amount of improvement de-
pends upon the model condition. For example, in model
tree 3, alignments vary in their 1-SP error rates (from 3 to 11
percent), but in that model all the ML trees have less than
one percent missing edge error rates. In contrast, model
trees 0 and 1 produced more variable alignments (from 15
to 46 percent for the 1-SP error in model tree 0), and RAxML
trees also vary substantially in their missing edge rates
(from 5 to 17 percent). On the other hand, if we consider
only MAFFT, ProbCons, Muscle, T-Coffee, DBClustal, and
ClustalW alignments, ignoring the significantly worse
DIALIGN and POA alignments, the picture becomes a bit
less clear. Even, here, the alignments vary in their 1-SP error
rates for these three model conditions (from 15 to 38 percent
for model trees 0 and 1, and from 3 to 9 percent for Model
Tree 3), but trees based upon these “good” alignments are
much closer in accuracy. Indeed, on two of the three model

conditions (model trees 0 and 3), there seems to be no real
difference between the RAxML trees based on these good
alignments; only on Model Tree 1 do we see any
appreciable difference. And, interestingly, it is only on
Model Tree 1 that tree errors are high, ranging from 28 (for
trees estimated on the true alignment) to 32 percent (for
trees estimated on T-Coffee and DBClustal). Otherwise,
although there are detectable differences in tree error rates,
they are somewhat small.

We analyzed the 12 real BAliBASE alignments using the
same experimental procedure (Appendix N, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.68). We
find that the ranking of alignment methods using the
various measures of accuracy (including alignment and
phylogenetic accuracy) is roughly the same here as in the
simulated data.
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on pairwise sequence comparison); (d) FN rate (missing edge rate) of RAxML with respect to the true tree; (e) FN rate (missing edge rate) of the
majority consensus of maximum parsimony with respect to the true tree (using PAM-weighted parsimony scoring matrix).



The conclusions we can draw from this experiment are
limited, but intriguing. We see that while substantial
differences in phylogenetic accuracy can result from
changing from a very poor alignment (e.g., some POA
alignments) to a very good (e.g., MAFFT or ProbCons)
alignment, trees based upon two “good” alignments (one of
the top four) can often be of comparable accuracy, even if
the alignments have quite different levels of accuracy.

3.2 Experiment 2: Analysis of Birth-Death Trees

In this simulation study, we focused on parametric model
tree generation to explore the interaction between various
model parameters (including model tree diameter, inser-
tion-deletion rate, sequence length, and the number of taxa),
and their effects on the accuracies of alignment and
phylogeny reconstruction (see the Methods section for
details). The data sets generated for this experiment had a
wider range of number of taxa, p-distances, and gappiness,
so that some of the data sets were very close to saturated and
many were very gappy (some even had almost 60 percent of
the true matrix gapped, see Appendix I, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2009.68). Thus, this
experiment produced a range of data sets, some of which
were harder to align than the data sets produced in the first
experiment. This experiment thus showed, unsurprisingly,
that the hardest model conditions for alignment estimation
are those with many indels and substitutions, and that trees
estimated on these alignments are also the poorest.

The results of this simulation study on random model
trees exhibited several clear trends regarding the relative

performance of multiple sequence alignment methods and
phylogeny estimation methods. The relative performance
between MSA methods in this experiment was also similar
to what we saw in the first experiment (Figs. 1 and 2,
Appendix J, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68): MAFFT alignments were more
accurate than both ClustalW and POA alignments, and
POA generally the least accurate. Interestingly, however,
the comparison between ClustalW and POA occasionally
varied. For most of the model conditions, ClustalW is better
than POA, but given the hardest model conditions,
ClustalW is worse than POA. Further, ClustalW’s accuracy
seems to degrade with increasing numbers of taxa, but this
trend does not hold for the other MSA methods. Also, ML
consistently produces better trees than MP or NJ. However,
there is no clear relative advantage between MP and NJ, as
the relative performance seems to depend upon the
particular model conditions.

An examination of the correlation between alignment
error and tree error, for each of the three phylogeny
estimation methods, shows that alignment error and tree
error are positively correlated, with the strongest correlation
obtained by ML-estimated trees, then by MP-estimated trees,
and finally by NJ-estimated trees. These positive correlations
are, however, relatively weak: when computing alignment
error using 1-SP, the Spearman correlation for ML is 0.443,
for MP it is 0.386, and for NJ it is 0.339 (Fig. 3 for RAxML; see
Appendix K, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68, for NJ and MP trees). Note also the
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Fig. 2. Performance of alignment methods in the random model tree simulation study using 100 taxa and 300 amino acids. See the table of
coefficients at http://people.pcbi.upenn.edu/~lswang/alignexp/correlation.xls for the full set of correlations, and Appendix J, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2009.68, for the complete results using 25 taxa and/or
150 amino acids.



greater variability in tree error for ML-estimated trees than
for MP and NJ-estimated trees (Fig. 2), which reflects the
greater correlation between alignment error and tree error
for ML.

The overall weakness of the positive correlation would
tend to suggest that alignment error does not have a large
impact on phylogeny reconstruction, but this turns out to be
a premature conclusion. A careful analysis of the data
reveals that the correlation varies tremendously between
model conditions. For example, the correlations between
alignment error measured using 1-SP and the missing edge
error rates for ML-estimated trees vary between 0.03 (very
weakly positive) and 0.8 (very strongly positive), depending
upon the model condition. Similar trends, but with smaller
values, occur for MP (�0:1 to 0.56) and NJ (0.3 to 0.54).
Thus, the model condition is an important consideration in
terms of predicting whether alignment error will have a
large or small impact on phylogenetic accuracy.

An investigation of the differences between the model
conditions reveals the striking observation that the correla-
tion between alignment error and tree error is strongly based
upon the average alignment error (averaged over all
alignment methods) for the model condition: when the
average alignment error is low, the correlation will be weak,
and when the average alignment error is high, the correlation
will be large. Fig. 4 shows scatter plots comparing alignment
error (here 1-SP and 1-TC against RAxML are shown; see
Appendix L, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68, for NJ and MP trees) and the

correlation between alignment error and tree error, for each
of the phylogeny estimation methods. Note the strong
correlation for each method when alignment error is
calculated using 1-SP: ML exhibits the strongest correlation
of 0.902, MP exhibits the correlation 0.844, and NJ exhibits
0.846. Also notice that when the alignment error is low
(below 20 percent, say), the correlation is quite weak—not
above 0.4 for ML, and not above 0.3 for MP and NJ. Indeed, it
is only for cases where the average alignment error is quite
high (around 50 percent) that alignment error is strongly
correlated to tree error. This striking observation helps
explain why substantial differences in alignment error can
result in modest differences in phylogenetic tree error (i.e.,
ClustalW and MAFFT have large differences in alignment
error but result in trees with approximately the same error
for Model Tree 0 from the BaliBASE model trees, as well as
for several of the random birth-death model trees).

We computed the standard deviation of the alignment
error and phylogeny FN error scores, and the correlations
between three alignment error scores and FN scores of the
three reconstructed phylogenies, with the three alignments
analyzed separately (Appendix O, which can be found on

the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2009.68). We found
that the correlations range from 0.49 to 0.78; the correlation
is highest in POA, followed by ClustalW, and lowest in
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Fig. 3. Relationship of alignment error (1-SP and 1-TC) and RAxML
reconstruction error (FN(RAxML)) for Experiment 2. In each scatter plot,
each of the 1,800 points corresponds to one of the 30 replicate runs from
the 60 model settings; its x coordinate is the average alignment error,
and its y coordinate is the topological error of the reconstructed tree with
respect to the true tree. The dark gray line corresponds to the linear
regression over the 1,800 points.

Fig. 4. Relationship between alignment error (1-SP and 1-TC) and the
correlation between alignment error versus RAxML reconstruction error
(FN(RAxML)) for Experiment 2. In each scatter plot, each point
corresponds to one of the 60 model settings; its x coordinate is the
average alignment error, and its y coordinate is the Spearman
correlation coefficient between the alignment error and the topological
error of the reconstructed tree with respect to the true tree. The dark
gray line corresponds to the linear regression over the 60 points.



Mafft. We hypothesize that this is due to the higher
variability of FN rates and alignment errors in POA (the
least accurate method) relative to Mafft (the most accurate
of the three).

We performed analysis using regression with additive
effects of log-transformed number of taxa, sequence length,
insertion/deletion rate, and diameter; regressions are
performed separately for the four alignment methods
(Appendix M, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68) to find the effects of simulation
parameters. Overall, increasing the number of taxa, indel
rate, or diameter all increase the width and gappiness of
alignments. Increases in the diameter almost always
increase alignment and phylogeny error. Longer sequences
in simulation decrease alignment width and gappiness for
POA and ClustalW, but has no effect for TrueAln and Mafft.
Increases in the indel rate increase alignment and phylo-
geny error in general for the three alignment methods,
though this has no effect on phylogeny reconstruction using
TrueAln. Thus, increases in the indel rate seem to make
alignment more difficult, which then results in phylogenetic
errors increasing.

In summary, there is a generally positive correlation
between alignment and tree error when model conditions
produce data sets with relatively high average alignment
errors. The positive correlation between alignment error and
ML tree accuracy is much weaker when alignment errors are
low and evaporates for MP and NJ analyses of data sets with
low average alignment error. This suggests that except for
model conditions that produce data sets that are quite
difficult to align, there will only be small consequences to
choosing between a very good alignment and a somewhat
poorer alignment—a prediction that is supported by Fig. 2,
which shows that except for the most difficult model
conditions (with the highest indel rates and most gaps),
RAxML trees based upon MAFFT, ClustalW, and the true
alignment all tend to have about the same error, even though
the estimated alignments can still have substantial error. (For
the full set of correlation coefficients between various
measures in our study across the replicate runs using all
48 settings, see the table of coefficients at http://people.pcbi.
upenn.edu/~lswang/alignexp/correlation.xls.)

4 DISCUSSION

Our study supports earlier studies that showed that the new
MSA methods produced by the protein alignment research
community do provide better estimates of alignments than
ClustalW, and that MAFFT and ProbCons have the highest
accuracy of the methods we examined. We also confirm
earlier studies showing that maximum likelihood produces
better trees than maximum parsimony or neighbor joining,
and that improving the alignment will tend to improve the
tree. However, here, we find that the impact of the alignment
method on phylogenetic accuracy depends upon the model
condition, so that under some conditions the impact is
relatively small. More precisely, when the model condition
produces data sets that are generally difficult to align (i.e.,
when indel rates and substitution rates are both high, see
Appendix P, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.68), then alignment accuracy and phy-
logenetic accuracy will be strongly correlated, but when the
model condition produces data sets that are easier to align,
then alignment and phylogenetic accuracy will only be
weakly correlated. As a result, if the choice is between a very
good method (such as ProbCons or MAFFT) and a very poor
method (such as POA), then it is likely that choosing the
better method will result in a better tree, but if the choice is
between two very good methods, or even between a very
good method and a moderately good one (like ClustalW),
there maybe little impact on the resultant phylogenetic
accuracy. Indeed, it seems that only when the estimated
alignments are sufficiently poor (perhaps with alignment SP-
error rates above 20 or 30 percent) will differences in
alignment error reliably produce an appreciable impact on
the resultant phylogeny. Furthermore, data sets with higher
evolutionary rates (larger diameters) and more indels tend to
show bigger differences in the accuracy of phylogenies
estimated on different alignments. For now, we hypothesize
that when alignments are relatively easy, there is enough
phylogenetic signal in any “reasonable” alignment (even one
with perhaps 20 percent of the homologous pairs missing) to
reproduce much of the tree one would get if one had the true
alignment. These observations may help resolve the seeming
contradictory findings of earlier studies, in which align-
ments have sometimes been shown to have a big impact on
phylogenetic estimation, but not always. From a practical
point of view, it would be desirable to develop a metric that
predicts whether a particular data set falls into the particular
model conditions for which alignment is likely to have a
significant impact on phylogenetic accuracy. One obvious
approach would be to compare the phylogenies based upon
different MSAs to see if the phylogenies change, but other
approaches merit inquiry.

While sequence alignment quality can influence phylo-
gentic accuracy, using the historical signal in insertions and
deletions for phylogeny reconstruction is also a challenge.
Our research has focused on how alignment quality
influences phylogenetic analysis of amino acid substitution,
but improvements in phylogentic estimation might be
expected if the information content of indels were utilized
in a more sensitive and appropriate manner.

Several attempts have been made to produce phyloge-
netic reconstruction methods that handle gaps appropri-
ately. Our study showed that removing “gappy” sites did
not improve phylogenetic estimations; however, other
methods for preprocessing alignments prior to phylogenetic
estimation might be able to improve the final phylogeny.
For example, gap-coding techniques that add indel char-
acters to the data set have only been developed for
parsimony analyses (e.g., [44]). However, gaps can also be
considered in the calculation of the distance matrix given to
distance-based methods like neighbor joining. It is possible
that the incorporation of such techniques may enable better
estimations of phylogenies with the consequence that
alignment accuracy could have a bigger impact on phylo-
genetic accuracy. However, to date, these techniques have
not been widely used by the phylogenetics community.

Beyond these modifications to distance-based and parsi-
mony-based analyses, other methods have also been
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attempted that incorporate gap events into the phylogeny
reconstruction process. Indeed, more than 30 years ago,
Sankoff asserted that the best alignment would be based
upon the true phylogeny [45], and more recent work [18] has
supported this assertion. This assertion would suggest that
alignments and trees should be sought simultaneously, as
some methods of phylogenetic inference attempt [17], [46],
[47], [48]. However, there are surprisingly few formal
investigations of how these methods perform, and the few
that have been done have concluded that the current
techniques for simultaneous estimation of alignments and
trees are not as accurate as the best two-phase techniques
(Fleissner et al. [46] showed that their statistical coestimation
technique was not as accurate as a phylogenetic analysis
based upon ClustalW alignments, while Kjer et al. [49] and
Ogden and Rosenberg [50] showed problems with using
POY as compared to phylogenies based upon ClustalW
alignments). While some researchers [49] remain optimistic
about the potential for statistical methods to provide high-
quality alignments and trees, these are computationally too
intensive [51] to be used except on small data sets. We have
not included these programs in our simulation study due to
their long running times, which make comprehensive
simulation studies difficult; nonetheless, this is an area of
active research, and advancements in implementation of
simultaneous estimation of alignments and phylogenies [24]
and model-based alignment [52] will promote improve-
ments in both simultaneous and two-phase approaches to
sequence alignment and phylogeny reconstruction.

How the alignment algorithms affect other aspects of
phylogeny reconstruction such as branch lengths and
internal node sequence estimation is an interesting research
direction that has important biological significance for other
topics including molecular dating and detection of directed
evolution. Finally, incorporating uncertainty into a phylo-
genetic analysis, through the exploration of the uncertainty
in the alignment itself, is also desirable [27], [52].

Another possible direction is to develop more informa-
tive alignment error metrics that can better predict the
accuracy of inferred phylogeny. We have shown that the
three alignment errors used in our simulation studies
provide only limited information; we showed (see Appen-
dix Q, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2009.68) that even by varying the alignment method,
choosing the most accurate alignment using TC or SP does
not lead to the most accurate phylogeny in Experiment 1;
the difference in FN rate can be as high as seven percent.
We tested the newly proposed AMA alignment error metric
[19] in the Yule experiment and found that AMA is highly
correlated with SP and TC scores (correlation>0.98), and all
observations regarding SP and TC apply to AMA. It is likely
that phylogentically relevant error metrics still need to be
developed, since the current accuracy measures are not
sufficiently informative.

In summary, the following questions are of major
concern: First, the development of alignment methods that
can produce more accurate alignments than current
methods will only improve phylogeny estimation for the
more difficult model conditions investigated in our study
(high indel rates and tree diameters). Second, the develop-
ment of phylogeny estimation methods that can utilize the

historical signal in indel events would be expected to

improve phylogenetic accuracy.
Finally, although our study focused on amino acid

alignment and we believe these results will extend to

nucleotide alignments. However, it is possible that there is

sufficiently greater phylogenetic signal in nucleotides as

compared to protein sequences, that there could be a higher

correlation between DNA sequence alignment and tree

error rates over a wider set of model conditions. The

implications of our results may also be limited to protein-

coding genes (versus rDNA or noncoding sequence align-

ments). For example, previous work has shown that the

quality of ribosomal DNA alignments can have a significant

impact on phylogenetic accuracy [26]. Future investigation

of these issues and the utility of simultaneous alignment

and phylogeny estimation are merited.
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