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Abstract This review bridges functional and evolution-
ary aspects of plastid chromosome architecture in land
plants and their putative ancestors. We provide an over-
view on the structure and composition of the plastid gen-
ome of land plants as well as the functions of its genes in
an explicit phylogenetic and evolutionary context. We will
discuss the architecture of land plant plastid chromosomes,
including gene content and synteny across land plants.
Moreover, we will explore the functions and roles of
plastid encoded genes in metabolism and their evolutionary
importance regarding gene retention and conservation. We
suggest that the slow mode at which the plastome typically
evolves is likely to be influenced by a combination of
different molecular mechanisms. These include the orga-
nization of plastid genes in operons, the usually uniparental
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mode of plastid inheritance, the activity of highly effective
repair mechanisms as well as the rarity of plastid fusion.
Nevertheless, structurally rearranged plastomes can be
found in several unrelated lineages (e.g. ferns, Pinaceae,
multiple angiosperm families). Rearrangements and gene
losses seem to correlate with an unusual mode of plastid
transmission, abundance of repeats, or a heterotrophic
lifestyle (parasites or myco-heterotrophs). While only a
few functional gene gains and more frequent gene losses
have been inferred for land plants, the plastid Ndh complex
is one example of multiple independent gene losses and
will be discussed in detail. Patterns of ndh-gene loss and
functional analyses indicate that these losses are usually
found in plant groups with a certain degree of heterotrophy,
might rendering plastid encoded Ndhl subunits
dispensable.

Keywords Plastid genome - Land plants - Genome
evolution - Plastid gene function - Gene retention

Abbreviations
glI(A) Group II(A) intron
IR Inverted repeat

LSC Large single copy region
NEP Nuclear encoded polymerase
ORF  Open reading frame

Ori Origin of replication

PEP Plastid encoded polymerase

PSI Photosystem I

PSII Photosystem II

PSRP  Nuclear-encoded plastid ribosome specific
proteins

SC Single copy

SDR Small dispersed repeat

SSC Small single copy region
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Introduction

Plastids are one of the main distinguishing characteristics
of the plant cell. The central function of the plastid is to
carry out photosynthesis, but other major cellular functions
also take place in plastids, including synthesis of starch,
fatty acids, pigments and amino acids (reviewed by Neu-
haus and Emes 2010). As early as 1905, Konstantin S.
Mereschkowski hypothesized that plant “chromatophores”
are the result of the uptake of a cyanobacterium by a
eukaryotic organism (English translation available by
Martin and Kowallik 1999). It is now generally accepted
that the plastid originated via incorporation of a free-living
cyanobacterial-like prokaryote into a eukaryotic cell (pri-
mary endosymbiosis), thereby enabling the transition from
heterotrophy to autotrophy by gaining the ability of uti-
lizing photoenergy. Recent phylogenetic analyses of plastid
genes from major plant lineages have converged on the
hypothesis that plastids of the plant kingdom, i.e. the clade
including Glaucophytes, Rhodophytes, Chlorophytes, and
Streptophytes (Fig. 1; Keeling 2004), are derived from a
single origin (Palmer 2000; McFadden and van Dooren
2004; Keeling 2010). This is also supported by several
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Fig. 1 Evolution of plastid gene content in land plants. Events of
gene losses in Embryophytes, as well as gains and duplication of
protein coding genes in green plant lineages are depicted along the
branches/nodes of the Plant Tree of Life (Palmer et al. 2004; Qiu et al.
2006; Zhong et al. 2010). The putatively ancestral gene content, as
reflected in Marchantia and derived from parsimony analysis after
Maul et al. (2002), is given at the first land plant node. Gene losses
during the evolution of land plants are indicated by red arrows (those
occurring before the emergence of Embryophytes are not considered
here); a green arrow indicates the evolution of a novel gene prior to
the transition to land; blue arrows refer to gene duplications. Changes
in the content of transfer RNAs are not considered here (refer to Gao
et al. 2010 for review). A detailed summary of gene losses during the
evolution of angiosperms is provided by Jansen et al. (2007) and
Magee et al. (2010). Although chl-subunits are still present in some
gymnosperm plastomes, multiple losses and pseudogenizations indi-
cate a functional transfer to the nuclear genome. As chl genes have
been lost entirely from angiosperm plastomes, functional chl-gene
transfer might have already occurred in a common ancestor
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biochemical features, such as the composition of light
harvesting complexes and their components, structural
RNAs, membrane structure, and the protein import/target-
ing machinery (Weeden 1981; Bolter et al. 1998; Keeling
2004; Yang and Cheng 2004; Koziol et al. 2007; Vesteg
et al. 2009).

Over evolutionary time, genetic information was func-
tionally or more often non-functionally transferred from
the endosymbiont’s genetic system to the host nuclear
genome, genetically intertwining the two genomes. Except
for genes involved in photometabolic processes, most other
genes have been incorporated into the nuclear genome.
This has resulted in a highly reduced plastid genome in
Streptophytes (land plants plus their closest algal relatives),
comprising less than 5-10% of the genes hypothesized for
the ancestral cyanobacterial genome (ca. 2000 to 3000
genes; Martin et al. 2002). A corollary of this process is
that the plastid genome (plastome) became subjected to
nuclear regulation (Timmis et al. 2004), locking in their
symbiotic relationship. The transfer of sequences and both
functional and non-functional genes from the plastid gen-
ome to both the nuclear and the mitochondrial genome
remains an ongoing process (Stern and Lonsdale 1982;
Stern and Astwood 1986; Nakazono and Hira 1993; Albus
et al. 2010, 1998; Shahmuradov et al. 2003; Matsuo et al.
2005; Guo et al. 2008; Sheppard and Timmis 2009). This
intracellular gene transfer is considered “frequent and [to
occur] in big chunks” (Martin 2003:1; Stegemann et al.
2003; Noutsos et al. 2005). The question of how many
genes can eventually be transferred to the nuclear genome
(and whether the plastome could eventually be lost) has
been discussed for some time (Barbrook et al. 2006).
Massive gene loss has been observed in several parasitic
plants (e.g. Orobanchaceae: Wolfe et al. 1992; Cuscuta:
Funk et al. 2007, McNeal et al. 2007). In these plants, gene
loss is not restricted to genes that are primarily involved in
photosynthesis and related pathways (Wolfe et al. 1992;
Krause 2008); additional losses or pseudogenization is seen
in genes encoding subunits of the genetic apparatus (e.g.,
plastid-encoded RNA polymerase, some tRNAs, some
ribosomal proteins; dePamphilis and Palmer 1990; Wolfe
et al. 1992; Lohan and Wolfe 1998).

Four decades of genetic, genomic and physiological
research have contributed substantially to assign genes and
gene functions to land plant plastid encoded proteins.
Plastid genes have been grouped into functionally defined
classes, including (i) those involved in primary and sec-
ondary photosynthesis pathways (photosynthetic light and
dark reactions), (ii) genes not involved in photosynthetic
pathways, such as sulfate transport and lipid acid synthesis,
(iii) genes involved in transcription and translation, and (iv)
a number of structural RNA genes (Palmer 1991; Sugiura
1992; Bock 2007). Subsequent studies have identified the
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roles of additional genes not falling into any of these genes
classes, including genes involved in post-transcriptional
modification (marK, Liere and Link 1995), protein turnover
or protein complex assemblies (Peltier et al. 2004). Cur-
rently, only two genes remain, ycfl and ycf2, whose met-
abolic or genetic roles have not yet been unambiguously
defined (Bock 2007).

In this review, we will discuss functional and evolu-
tionary insights from research on land plant plastid chro-
mosomes, providing a synthesis of our knowledge of their
evolution and conservation. Accordingly, particular
emphasis will be placed on genetics of plastomes in the
context of land plant diversification, with special attention
to the roles of plastid-encoded proteins in photosynthesis
and other principal genetic pathways.

Plastid genetics and synteny of land plant plastid
chromosomes

Plastid inheritance

The transmission (inheritance) of plastids has been dis-
puted for many years. For seed plants, mechanisms and
occurrences of plastid inheritance have been studied in a
great number of species (reviewed in Hagemann 2004;
Bock 2007; Zhang and Sodmergen 2010). However, little is
known about plastid transmission in earlier land plant lin-
eages, probably due to methodological difficulties. Ultra-
structural studies of functional sperm cells of bryophytes,
lycophytes, horsetails and water ferns (heterosporous ferns)
reported the presence of proplastids (reviewed in Sears
1980). In liverworts and mosses, the sperm cell’s prop-
lastids are “discarded” before fertilization (Sears 1980, and
references therein). Maternal plastid transmission was
subsequently demonstrated for the liverwort Pellia (Pacak
and Szweykowska-Kuliniska 2002) and several moss rep-
resentatives (Rhizomnium: Jankowiak et al. 2005; Sphag-
num: Natcheva and Cronberg 2007; Plagiomnium:
Jankowiak-Siuda et al. 2008). Maternal inheritance of
plastids was shown for the horsetail Equisetum variegatum
(Guillon and Raquin 2000), but nothing is known about the
fate of the sperm cell’s proplastid. Most, though probably
not all, plastid-like structures are lost from the spermato-
zoids of lycophytes, and it seems as if there was a strong
bias towards predominantly maternal plastid transmission
caused by degradation prior or immediately after fertil-
ization (Sears 1980). The absence of a plastid-like structure
in sperm cells was shown in representatives of leptospo-
rangiate ferns (Pteridium: Bell et al. 1966; Thelypteris:
Sears 1980). This suggested maternal plastid transmission,
which was later confirmed using molecular biological
methods for Cheilanthes (Gastony and Yatskievych 1992)

and Asplenium (Vogel et al. 1998). In gymnosperms and
angiosperms, uniparental inheritance is more frequent than
biparental transmission (Hagemann 2004). Maternal
inheritance is typical for angiosperms and the gymnosperm
groups cycads and gnetophytes. In the majority of gym-
nosperms (conifers) paternal transmission is the dominant
mode (Hagemann 2004; Zhang and Sodmergen 2010).
However, biparental inheritance has evolved multiple times
in seed plants, in particular in eudicot angiosperms such as
Geraniaceae (e.g. Tilney-Bassett and Almouslem 1989),
Campanulaceae (Corriveau and Coleman 1988) and Faba-
ceae (Corriveau and Coleman 1988). In gymnosperms,
biparental inheritance is much less frequent (Hagemann
2004).

Architecture of plastid chromosomes

In vivo structure and molecular conformation of the plastid
chromosome has long been thought to be exclusively cir-
cular. However, several studies employing in situ hybrid-
ization techniques demonstrated that often only a minor
proportion of the molecules occur in a circular and cova-
lently closed form. Instead, the majority of plastid chro-
mosomes are arranged in concatemers of two or more
molecules in either circularized or linear form (Deng et al.
1989; Bendich and Smith 1990; Bendich 1991, 2004,
Harada et al. 1997; Lilly et al. 2001). It is still unknown
how these concatemeric molecules are formed, and how
linkage and breakage is carried out in vivo. It is speculated
that the formation of these supermolecules might facilitate
maintenance of gene organization and genome integrity
(Day and Madesis 2007; Maréchal and Brisson 2010).
However, the formation of supermolecules as a primary
stabilizing factor needs to be evaluated carefully. Mito-
chondrial DNA forms concatemeric molecules as well, but
exhibits a great variety of genome size and structure among
land plants (Palmer and Herbon 1988; Bendich 2007).
The size of photosynthetic land plant plastid chromo-
somes ranges from 120 kb to 160 kb. The plastome in
photosynthetic plants comprises 70 (gymnosperms) to 88
(liverworts) protein coding genes and 33 (most eudicots) to
35 (liverworts) structural RNA genes (Wakasugi et al.
1994; Ohyama 1996; Bock 2007), totaling 100—120 unique
genes (Fig. 1). The vast majority of these genes are
arranged in operons (or operon-like structures) and tran-
scribed as polycistronic precursor molecules that are sub-
jected to splicing and nucleolytic cleavage in order to
produce mature and translatable mRNAs (Stern et al.
2010). Functional gene classes (translation/transcription,
electron transfer, and photosystems) are often arranged in
close vicinity to one another (Fig. 2; Cui et al. 2006).
Using a parametric bootstrap-approach, Cui et al. (2006)
showed that the genomic rearrangements of some
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Fig. 2 Synteny of land plant plastid chromosomes. The plastid
chromosomes are shown in linearized form illustrating relative gene
synteny. Genes are depicted by boxes colored according to their
relevant functional class (see legend). Genes encoded by the leading
strand (+ strand) or by the lagging strand (- strand) are shown above
or below the grey chromosome bar, respectively. Lengths of boxes do
not reflect lengths of genes, but are artificially increased to aid
legibility (consequently, overlapping genes on =+ strand do not
indicate overlapping reading frames). Lines from selected genes/
gene-regions mentioned above the first chromosome bar roughly

chlorophytic algae (e.g. Chlamydomonas) relative to others
are not random. Results indicated that the physical clus-
tering of genes belonging to a similar functional class is
positively selected. Furthermore, expression analysis indi-
cated that some of these newly formed cluster are
co-transcribed which led the authors to speculate that these
could represent new regulons (Cui et al. 2006).

The plastid chromosome displays a quadripartite struc-
ture, i.e. it is divided into four major segments (Fig. 2).
Two of those contain only single copy (SC) genes and are
referred to as Single Copy regions. The Large Single Copy
region (LSC) harbors the majority of plastid genes; its
smaller counterpart is known as the Small Single Copy
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indicate genes clusters that have been reorganizated during land plant
evolution. Not all regions that underwent genomic relocations prior or
during land plant evolution are depicted here. The chromosome bars
are colored gray to highlight the positions of the two large Inverted
Repeat regions (IRA/IRp) and are connected by gray lines between the
different lineages. Gray lines are discontinued once to indicate loss of
the large inverted repeat in Pinus. Drawn with GenomePixelizer
(Kozik et al. 2002) using genome annotations deposited in public
sequence databases. Refer to the text for genome references and
original publications.]

region (SSC). The third segment is duplicated and exists in
two nearly identical copies separating the SC regions
(Kolodner and Tewari 1979). These copies are inverted
and, therefore, termed large Inverted Repeats A and B
(IRA, IRR). An IR is between 20 and 30 kb in size in
angiosperms compared to only 10-15 kb in most non-seed
plant lineages (Kolodner and Tewari 1979; Palmer 1991;
Raubeson and Jansen 2005; Wu et al. 2009; Wolf et al.
2010a). However, several lineages deviate strongly from
the average, such as Cycas (25 kb, Wu et al. 2007), the
cypress Cryptomeria (114 bp, Hirao et al. 2008) or the
eudicot Geraniaceae (Monsonia: 7 kb, Guisinger et al.
2010; Pelargonium: 76 kb, Chumley et al. 2006). As the
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IRs are essentially identical, one might describe the plastid
genome structure also as tripartite (as in Bock 2007), since
the IRs share molecular evolutionary patterns that clearly
differ from those observed in the SC regions. This quad-
ripartite (or tripartite) architecture is already present in
algal lineages including the closest relatives of land plants
(e.g. Chaetosphaeridium, Chara; Turmel et al. 2002,
2006), implying a pre-land plant origin for this important
conserved structural feature.

The plastid chromosomes of charophyte algae, the
closest relatives of land plants (Qiu et al. 20006), are larger
than those of land plants. They contain several genes that
have either been lost or functionally transferred to the
nuclear genome in Embryophytes (Turmel et al. 1999;
2006). Parsimony analyses reconstructing unambiguous
changes in gene content among plants revealed that the
gene ycfl was gained in a common ancestor of several
green algae and land plants (Maul et al. 2002). The gain of
an intron in the trnKyyy coding regions, including an
intact open reading frame (ORF; matK), is shared by
Charophytes and Embryophytes (Maul et al. 2002; Lewis
and McCourt 2004; McNeal et al. 2009). Comparative
analysis revealed that the plastome structure and gene
content in Chaetosphaeridium, a unicellular freshwater
charophyte alga, is most similar to that of early land plants
(Turmel et al. 2002): Large blocks of co-linear groups of
genes are already present in this genus. Yet, in order to
obtain the structural organization of early land plant
plastomes, several functional gene transfers to the nuclear
genome (e.g. tufA, ftsH, odpB, rpl5), one gene gain (ycf2),
and a minimum of eight inversions are necessary (Turmel
et al. 2006; Gao et al. 2010). One of those inversions
involves a region of the LSC approximately 30 kb in length
(Raubeson and Jansen 1992). A huge inversion of the
complete matK—atpA-I—rpoB-C1/2-region is shared
between ferns and seed plants (Fig. 2), whereas liverworts
(Ohyama et al. 1988; Wickett et al. 2008a), mosses
(Sugiura et al. 2003; Oliver et al. 2010), hornworts (Kugita
et al. 2003), and lycophytes (Wolf et al. 2005; Tsuji et al.
2007; Karol et al. 2010) show a more ancestral organiza-
tion similar to that of Chaetosphaeridium (Quandt et al.
2003; Turmel et al. 2002). Generally, the presence of such
rearrangements implies that additional transitional forms
probably existed and might still be observable in lineages
that have remained unstudied so far.

Synteny and structural rearrangements
Plastome rearrangements
Hotspots for structural rearrangements within plastid gen-

omes include the IRs, which are frequently subject to
expansion, contraction or even complete loss. Such

changes occurred several times independently during the
evolution of land plants and often are specific for single
orders and families, sometimes even for just one or a few
species within a genus (Downie and Bewley 1992; Goul-
ding et al. 1996; Plunkett and Downie 2000; Daniell et al.
2006; Guisinger et al. 2010; Wolf et al. 2010a). Further-
more, extensive changes within the IRs appear to have an
effect on the structural integrity of the entire plastid
chromosome beyond the IRs and their immediate neigh-
borhood. This is likely due to their role as putatively
important players in the stabilization of the plastid chro-
mosome via homologous recombination-induced repair
mechanisms (Maréchal et al. 2009; Rowan et al. 2010;
reviewed in detail by Maréchal and Brisson 2010).

Early branching gymnosperms (McCoy et al. 2008; Wu
et al. 2009), angiosperms (Goremykin et al. 2003; Cai et al.
2006) and derived leptosporangiate ferns possess much
larger IRs than the remaining land plant lineages (Waka-
sugi et al. 1998; Roper et al. 2007; Karol et al. 2010). Thus,
large scale expansions of the IRs most likely occurred at
least twice independently over the evolution of major land
plant groups, including once in the common ancestor of
seed plants. Additional large- (Guisinger et al. 2010) and
small-scale (Goulding et al. 1996) expansions have
occurred within angiosperms. As a result of the re-location
into the IR, several previously SC genes became dupli-
cated, including the largest plastid gene, ycf2 (Wolf et al.
2010a). A duplication of the ycf2 gene occurs indepen-
dently in derived leptosporangiate ferns (tree and polypod
ferns) and might be functionally relevant for plant devel-
opment. In angiosperms, ycf2 expression is highest in fruits
(Drescher et al. 2000), but comparable data for leptospo-
rangiate ferns (or other land plant lineages) are lacking so
far. Interestingly, plastome re-structuring in ferns is cor-
related with an expansion of the IR (Thompson et al. 1986;
Stein et al. 1992; Raubeson and Stein 1995; Wolf et al.
2010a).

Contraction of the large inverted repeats involves only
few (tens to hundreds of) base pairs up to and including
complete IR loss. The positions of the LSC-IR junctions
vary slightly within groups, but usually this has only neg-
ligible effects on plastome size (Goulding et al. 1996;
Daniell et al. 2006; Wang et al. 2008). It has been sug-
gested that such positional changes of IR-junctions among
species are the result of gene conversion (Goulding et al.
1996). In several groups, one of the IR-region has been
completely lost, for instance in several legumes (Palmer
et al. 1987b; Cai et al. 2008; Jansen et al. 2008; Tang-
phatsornruang et al. 2010), members of Geraniaceae
(Guisinger et al. 2010), and some representatives of
Orobanchaceae (Downie and Bewley 1992; S. Wicke, C.
W. dePamphilis, D. Quandt and G. M. Schneeweiss,
unpublished data). So far, no properties have been
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identified that are shared between these rather distantly
related angiosperms and might provide an explanation for
these IR losses. In legumes, the loss apparently affects
overall structural stability, leading to mutational hotspots
(Palmer et al. 1987b; Milligan et al. 1989; Cai et al. 2008;
Magee et al. 2010) and an overall increase of nucleotide
substitution rates (Perry and Wolfe 2002). The changes in
gene order of a Vigna angularis cultivar relative to other
members of Fabaceae have been proposed to either be
caused by a large inversion or mediated by a two-step
model including IR expansion and contraction (Perry et al.
2002).

Small dispersed repeats

Reorganizations are in many cases associated with small
dispersed repeats (SDR), which are hypothesized to con-
tribute to the double-strand break induced repair mecha-
nism (Milligan et al. 1989; Maul et al. 2002; Odom et al.
2008). SDRs often contribute significantly to repeat space
in genomes with highly rearranged gene order and add to
structural polymorphism in even closely related lineages
(Maul et al. 2002). SDRs mainly occur in non-coding DNA
fractions (spacer, introns; Raubeson et al. 2007), where
they are often associated with small hairpin structures
(Quandt et al. 2003; Kim and Lee 2005). The greatest
concentrations of SDRs have so far been reported in green
algal plastid genomes (ca. 20% of the Chlamydomonas
plastome), although this seems to be highly lineage specific
(Maul et al. 2002). Large repeats are assumed to be sup-
pressed (or selectively eliminated) in plastid DNA because
of their ability to cause recombination that may destabilize
genome structure (Gray et al. 2009; Maréchal and Brisson
2010). Among angiosperms, the most abundant sizes of
SDRs are on average smaller than 50 bp with direct repeats
being more frequent than inverted repeats (Raubeson et al.
2007). A significant increase of repeats larger than the
average has been reported in highly rearranged genomes
such as Geraniaceae (Guisinger et al. 2010), Campanula-
ceae (Haberle et al. 2008), and Fabaceae (Cai et al. 2008),
supporting the notion that repeats and genomic rearrange-
ment are causally related. Possibly, tRNA genes might be
recognized as repeated elements causing rearrangements
by intramolecular or non-homologous recombination
(Ogihara et al. 1988; Hiratsuka et al. 1989). In many cases,
breakpoints of inversions are flanked by tRNA genes and
short repetitive sequences (Hiratsuka et al. 1989; Haberle
et al. 2008; Guisinger et al. 2010).

A unique switch in IR orientation (inversion) has
occurred along the branch separating early diverging fern
lineages (Psilotum, Angiopteris: Wakasugi et al. 1998;
Roper et al. 2007; Karol et al. 2010) from derived lep-
tosporangiate ferns (Adiantum, Alsophila: Wolf et al. 2003;
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Gao et al. 2009). This might be an outcome of the flip-flop
recombination process proposed by Palmer (1983). Two
smaller rearrangements occur at the breakpoint of the large
inversion that is synapomorphic to all vascular plants
except lycophytes (Raubeson and Jansen 1992; Wolf et al.
2003). The inversions reported in derived leptosporangiates
are likely to be caused by two overlapping inversions
during the evolution of leptosporangiate ferns (Wolf et al.
2003, 2010).

Several small and large inversions that are not accom-
panied by expansion and contraction of an IR have been
reported for diverse angiosperm lineages (Asteraceae:
Jansen and Palmer 1987; Kim et al. 2005; Spinacia: Sch-
mitz-Linneweber et al. 2001; some Oleaceae: Lee et al.
2007; Mariotti et al. 2010; grasses: Hiratsuka et al. 1989;
Bortiri et al. 2008), but seem to be less frequent in early
land plants lineages. However, one large inversion (71 kb),
affecting nearly the entire LSC, is found in the model moss
Physcomitrella patens (Sugiura et al. 2003). This inversion
was shown to be autapomorphic to Physcomitrella and
Funariales, but absent in other mosses (Goffinet et al.
2007). Due to the small number of plastid genomes
sequenced from early land plant lineages, little is known
about other structural rearrangements in bryophytes. As of
this writing, no structural changes (inversions) have been
identified in liverworts (L. L. Forrest and B. Goffinet,
Ecology and Evolutionary Biology, University of Con-
necticut/USA, personal communication). Some of the
largest inversions observed may be attributable to flip-flop
recombination due to the existence of the large inverted
repeats (Palmer 1983). In the flowering plants studied so
far, it has been shown that flip-flop recombination and
inversions predominantly occur around the origin of rep-
lication (ori). In some angiosperms, the orig maps to the
rDNA-ycf1 region within the IR, which is located more
closely to the IR-SSC-boundary than to the IR-LSC
junction (Thompson et al. 1986; Lu et al. 1996;
Kunnimalaiyaan and Nielsen 1997; Eisen et al. 2000;
Mackiewicz et al. 2001).

Genome size reduction, gene transfer, and gene gains

Genome size reduction is another major aspect of non-
canonical structural evolution. The most dramatic changes
in genome size and gene content have been reported for
non-photosynthetic parasitic plants. The plastome of Epif-
agus (Wolfe et al. 1992) measures only about half the size
of an average eudicot plastome (Bock 2007). This is
mainly due to non-functionalization of most photosynthe-
sis-related genes (dePamphilis and Palmer 1990) and some
genes for transcription and translation (Morden et al.
1991). Although there is a general trend of (functional)
plastid genome reduction in parasitic plants, the size and
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gene content seem to vary widely among different lineages
because some highly heterotrophic species retain photo-
synthetic ability (Revill et al. 2005; Funk et al. 2007,
McNeal et al. 2007; Nickrent and Garcia 2009). Indepen-
dent of parasitism, genome reduction was observed in
Pinaceae and Gnetophytes (McCoy et al. 2008; Wu et al.
2009), due in large part to the loss of ndh genes. The
plastomes of Gnetum and Welwitschia are also more
compact than in other seed plant lineages due to the
reduction of intron and spacer regions (McCoy et al. 2008;
Wu et al. 2009). This genome reduction is speculated to be
the result of a low-cost strategy that could facilitate rapid
genome replication under disadvantageous environmental
conditions (McCoy et al. 2008; Wu et al. 2009).

Translocation of single genes is rare in plastid genomes,
and this is likely a reflection of the overall rarity of inserted
(vs. lost or rearranged) sequences in plastid genomes.
Reports of foreign DNA being naturally inserted into the
plastid DNA are rare (Maul et al. 2002; Haberle et al. 2008;
Guisinger et al. 2010); perhaps in part because of the dif-
ficulty of detecting insertions in poorly conserved inter-
genic regions. Many of the repetitive elements found in
highly rearranged genomes seem to be derived from plastid
sequences (Cai et al. 2008; Haberle et al. 2008; Guisinger
et al. 2010). However, some are unique which might sug-
gest either rapid divergence or a non-plastid origin (Gui-
singer et al. 2010). As already mentioned by Park et al.
(2007), the putatively horizontally acquired rbcL gene
copies found in several Phelipanche species (Orobancha-
ceae) are most likely located in the nuclear or mitochon-
drial genome, and are not plastid encoded. RbcL appears to
be generally absent from Phelipanche plastid genomes
(S. Wicke, D. Quandt, C. W. dePamphilis, G. M. Schnee-
weiss, unpublished data).

Gene gains, too, are exceptional during plant evolution
(e.g. matK, ycf1/2; Fig 1). The organization and regulation
of genes in operons might be one stabilizing factor. Most
often, localized changes of gene order are caused by the
loss of single genes to the nuclear genome, or due to non-
functionalization in parasitic or mycotrophic plants.

Functional transfer of genes and subsequent loss of the
plastid gene copy has been reported for some rosids (Jan-
sen et al. 2010), some monocots (e.g. Hiratsuka et al. 1989;
Masood et al. 2004; Saski et al. 2007) and the spikemoss
Selaginella uncinata (Tsuji et al. 2007).

Contrasting with the overall high degree of conservation
of plastome structure and gene content in land plants,
massive structural changes are occasionally found in sev-
eral unrelated lineages. These include derived angiosperm
families such as Geraniaceac (Palmer et al. 1987a;
Chumley et al. 2006; Guisinger et al. 2010), Fabaceae
Palmer et al. (1987b); Milligan et al. 1989; Cai et al. 2008;
Tangphatsornruang et al. 2010), members of Onagraceae

(Oenothera: Hupfer et al. 2000; Greiner et al. 2008),
Campanulaceae (Knox and Palmer 1999; Cosner et al.
1997, Cosner et al. 2004; Haberle et al. 2008), but also
leptosporangiate ferns (Wolf et al. 2003, 2010; Gao et al.
2009). Because some of the extensively re-shuffled
angiosperm plastomes occur in lineages with biparental
plastid inheritance (Corriveau and Coleman 1988), it is
tempting to speculate that the nature of plastid inheritance
may affect plastid genome stability. Biparental inheritance
combined with fusion of paternal and maternal plastids
(although rare; Wellburn and Wellburn 1979) would likely
result in homologous recombination between putatively
divergent plastome copies (experimentally shown by Fejes
et al. 1990), eventually leading to alteration of the genome
structure. In other plants, major rearrangements, in partic-
ular gene losses, are obviously connected to a change in
lifestyle from autotrophy to parasitism or myco-heterotro-
phy (Aneura: Wickett et al. 2008a; Orobanchaceae:
dePamphilis and Palmer 1990; Wolfe et al. 1992; Con-
volvulaceae: Funk et al. 2007; McNeal et al. 2007, 2009;
Viscaceae: Nickrent and Garcia 2009; and Lennoaceae:
Y. Zhang and C.W. dePamphilis, unpublished data).

The precise mechanisms underlying structural changes
are as yet unknown, but they are often associated with the
presence of nearby repeat sequences, including small
repeated sequences that are dispersed through the genome
(Maul et al. 2002; Cui et al. 2006; Omar et al. 2008; Cai
et al. 2008; Gray et al. 2009; Maréchal and Brisson 2010).
Similarly to the plastid genome, in both the nuclear and
mitochondrial genomes, structural reorganizations often
are observed in proximity to structural RNA genes and
short repetitive flanking sequence motifs (Grewe et al.
2009). In the nuclear genome, the latter is often associated
with transposon activity (Woodhouse et al. 2010). In
mitochondrial genomes, transposons are restricted to
angiosperms (Knoop et al. 1996; Kubo et al. 2000; Notsu
et al. 2002), but are absent in early land plant lineages
(Ohyama 1996; Knoop 2004; Grewe et al. 2009). No (retro-)
transposons, or traces thereof, have ever been reported from
land plant plastomes. Yet, the plastid chromosome of the
model green algae Chlamydomonas harbors two copies of
the non-functional transposable element Wendy (Fan et al.
1995, Maul et al. 2002). Consequently, mechanisms sug-
gested for nuclear and mitochondrial genomes are less likely
for plastid genomes given the current knowledge on their
evolution (reviewed in Palmer 1991; Raubeson and Jansen
2005; Bock 2007).

Other possible candidates for causing restructuring of
plastid genomes are relaxed repair mechanisms and/or
recombination processes. Recently, several nuclear enco-
ded genes and gene families have been identified that
mediate stabilization, repair and maintenance of the plastid
chromosome (Day and Madesis 2007; Maréchal and
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Brisson 2010). It might be possible that mutations in these
proteins could lead to impaired maintenance of the plastid
genome structure (Guisinger et al. 2010).

Gene content and function of the plastid genome

The central function of the chloroplast is to carry out
photosynthesis and carbon fixation. Besides genes encod-
ing elements for the genetic apparatus, such as structural
and transfer RNAs, the plastome encodes numerous pro-
teins for photometabolic pathways (Palmer 1991; Sugiura
1992; Raubeson and Jansen 2005; Bock 2007). The fol-
lowing functional protein categories can be distinguished
(Table 1): proteins for the genetic apparatus, for non-
photosynthesis related metabolic pathways, for primary
(light-dependent) photosynthetic reactions, and for sec-
ondary (light-independent) photosynthesis pathways. In
most cases, fully functional protein complexes are assem-
bled from plastid encoded gene products and nuclear
encoded subunits that are imported into the plastid
organelle.

Plastid encoded elements for the plastid genetic
apparatus

Many genes that encode pathways for the plastid genetic
apparatus have been transferred to the nucleus and are now
imported into the plastid. However, genes for transcription
and protein biosynthesis are retained in the plastome. These
comprise structural RNAs (rRNA, tRNA), some ribosomal
proteins, and genes for a DNA-dependent RNA polymerase
as well as few genes coding for DNA and protein pro-
cessing enzymes.

Genes for DNA/RNA processing enzymes

Plastid genetics is sometimes described as “chimeric” in
that eukaryotic cytosolic (e.g. poly-A-binding proteins) and
eubacterial components (e.g. Shine-Dalgarno interactions)
are combined with novelties such as regulating stem loops
in the 5'- and 3’- untranslated regions of plastid mRNAs
(Zerges 2000). Transcription of plastid genes is carried out
by a set of DNA-dependent RNA polymerases: nuclear
encoded (phage-type) polymerase (NEP) and plastid-
encoded (eubacterial-type) polymerase (PEP). Both tran-
scribe distinct groups of genes (Hajdukiewicz et al. 1997;
Cahoon and Stern 2001; Shiina et al. 2005) and require
different transcription promoting signals (Weihe and Bor-
ner 1999). Promoter signals of PEP-transcribed genes are
highly similar to those of eubacterial ¢70-promoters with
AT-rich sequences in the -35 promoter element (consensus
5-TTGACA-3') and the -10 TATA-box (consensus
5'-TATAAT-3') upstream of the transcription initiation site

@ Springer

(Briat et al. 1986). Promoter elements of NEP-transcribed
genes are less conservative and share only short elements
(Weihe and Borner 1999). Three different types are known.
Two are characterized by a common core promoter YRT-
element (i.e. purine-pyrimidine-thymidine stretch) that is
highly conserved among flowering plants. This motif is
localized in close proximity to the start codon (less than
10 bp away), where it can be preceded by a GAA-box. The
different classes of promoters are recognized by two phage
type polymerases. In Arabidopsis, the existence of at least
two plastid targeted NEPs has been experimentally cor-
roborated (Swiatecka-Hagenbruch et al. 2008), but evi-
dence for differential usage or affinity to particular
promoters is currently lacking. In eudicots, one of these
NEPs is targeted to mitochondria and plastids (Kobayashi
et al. 2001), which is reflected in partially shared promoter
architectures between both organelles (Kiihn et al. 2005).
However, this dual-targeted phage type polymerase
appears to be absent from other land plants including
monocots and early diverging angiosperms (Yin et al.
2010).

PEP is lost or pseudogenized in some parasitic plants
with minimal or no photosynthetic activity such as Cuscuta
(Funk et al. 2007; McNeal et al. 2007) and Orobanchaceae
(Wolfe et al. 1992; Delavault et al. 1996). The loss of PEP
subunits renders its promoters dispensable, potentially
allowing them to be lost from the plastome (Krause et al.
2003). However, NEP seems to be able to take over at least
some of PEP’s transcriptional functions as suggested by the
frequent presence of both NEP and PEP promoters
upstream of several plastid transcription units, for instance
in the rrnl6-trnV region (Krause et al. 2003). In both
Cuscuta (Berg et al. 2004) and Lathraea (Lusson et al.
1998) expression of the rbcL gene is accomplished by NEP
after the loss of PEP.

MatK—a general group IIA intron maturase?

Protein coding genes that are related to (post-) transcrip-
tional activity include the marK gene. The marK-gene
product is thought to act as a splicing factor for plastid
group ITA (gIlIA) introns (Liere and Link 1995). It is
commonly referred to as a ‘general’ maturase associated
with several different intron-containing plastid mRNAs
(Zoschke et al. 2010). MatK is transcribed from the sole
intact plastid gII intron ORF localized between the exons
coding for the lysine-tRNA (zrnKyyy). In contrast to other
gll ORFs, MatK has lost domains assigned to a reverse
transcriptase and endonuclease function. Similarity to
typical gll ORF maturases is only retained in the DNA-
binding domain (Mohr et al. 1993; San Filippo and
Lambowitz 2002; Mohr and Lambowitz 2003; Lambowitz
and Zimmerly 2004; Pyle and Lambowitz 2006; Hausner
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et al. 2006). The molecular evolution of the marK coding
region is unusual compared to other plastid genes in that all
three codon positions evolve at nearly equal rates (Hilu and
Liang 1997). This feature makes it particularly useful for
phylogenetic reconstruction (Miiller et al. 2006; Wicke and
Quandt 2009). Equal substitution rates at all codon posi-
tions, however, are indicative of relaxed purifying selection
(Miiller et al. 2006; Duffy et al. 2009), which led several
authors to question its function or functionality in land
plants (Hausner et al. 2006). Substitution rate analysis,
however, demonstrated purifying selection for marK in
parasitic lineages including Orobanchaceae (Young and
dePamphilis 2000) and some Cuscuta species (McNeal
et al. 2009), providing evidence for sustained functionality.
In Cuscuta, however, matK is absent from species (Funk
et al. 2007; McNeal et al. 2007) that have lost all of the
seven gIIA introns that likely depend upon the marK
maturase for splicing (McNeal et al. 2009; Zoschke et al.
2010), which lends further support to the hypothesis of a
more general demand for the matK-encoded maturase
function.

Structural RNAs

Reflecting their localization within the IR region, two sets of
structural ribosomal RNA species (rrn23, rrnl6, rrnS,
rrnd.5) are encoded in most plastid genomes of green plants
studied so far. The few exceptions with only one set occur in
lineages that have lost one copy of the IR. The ancient
duplication of the plastid ribosomal DNA operon and its
conservation throughout plant evolution might be attributed
to generally high quantities of rRNA required for ribosome
synthesis during early developmental stages (Bendich
1987). The large ribosomal subunit (rrn23, cpLSU) is
arranged upstream of the smallest ribosomal subunits of
4.5S (rrn4.5) and 5S RNA (rrnS), which might facilitate
expression and delivery of either subunit at equal ratios.
Moreover, the existence of two copies facilitates the main-
tenance of these genes by, e.g., gene conversion (Lemieux
and Lee 1987). The small ribosomal subunit (rrn16, cpSSU)
is separated from the remainder rRNAs by two tRNA genes.
Functional domains of either rRNA species are highly
conserved and show 65-80% similarity to eubacterial
(cyanobacterial) ribosomal RNAs (Palmer 1985; Harris
et al. 1994; Stoebe and Kowallik 1999; Zerges 2000).

30 different tRNAs are encoded in a typical angiosperm
plastid genome. Recognition of all 61 codons is possible by
superwobbling (“two out of three”-mechanism; Lagerkvist
1978; Pfitzinger et al. 1990; Rogalski et al. 2008). Super-
wobbling allows reading of all possible codons even if there
is only one tRNA encoded as in the case of alanine, arginine,
asparagine, aspartic acid, cysteine, glutamic acid, histidine,
lysine, phenylalanine, proline, tryptophan, and tyrosine

(Palmer 1991; Sugiura 1992; Bock 2007). In addition to
protein biosynthesis, glutamyl tRNA (encoded by the plastid
trnE gene) plays a prominent role during activation of heme
biosynthesis (Smith 1988; Howe and Smith 1991; Jahn et al.
1992). This and the low rates of tRNA import into cell
organelles (Dietrich et al. 1992, Dietrich et al. 1996; Lohan
and Wolfe 1998) led Barbrook et al. (2006) to suggest that a
minimal plastid genome would at least contain the trnE
gene. However, experimental data concerning the import
machinery for small structural RNAs are rare and evidence
for general tRNA import into plastids is lacking. Therefore,
it remains speculative to what extent the plastid genome
could eventually be reduced.

Nonphotosynthetic and minimally photosynthetic
angiosperms typically retain only a fraction of tRNAs
(Morden et al. 1991; Lohan and Wolfe 1998; Funk et al.
2007; McNeal et al. 2007, 2009; Nickrent and Garcia
2009). In Orobanchaceae, the loss of some tRNA-genes,
e.g. trnC, seems to be correlated with the loss of photo-
synthesis (Taylor et al. 1991). Because expression analyses
of retained genes in the highly reduced plastomes of
Epifagus (Wolfe et al. 1992) and Conopholis (Wimpee
et al. 1991, Wimpee et al. 1992) suggest an intact trans-
lation apparatus, the loss of tRNAs from their genomes
might be indicative of tRNA import into plastid organelles.
Pseudogenization of tRNAs has been reported for the
mistletoe Arceuthobium (Nickrent and Garcia 2009) and
for Cuscuta (Funk et al. 2007; McNeal et al. 2007). In non-
parasitic plants, the loss of e.g. frnKyyy has occurred
independently multiple times (Selaginella: Tsuji et al.
2007; leptosporangiate ferns: Duffy et al. 2009; Wolf et al.
2010; Gao et al. 2010; Geraniaceae: Guisinger et al. 2010).

Plastid ribosomal proteins and ribosomes

Plastid protein biosynthesis is carried out at eubacterial-
like 70S ribosomes (Zerges 2000). These are assembled
from the small 30S ribosomal subunit and the large 50S
subunit. The 16S ribosomal RNA builds the backbone of
the 30S ribosome subunit, which additionally includes 25
ribosomal proteins (Yamaguchi et al. 2000). The remaining
three plastid rRNA species together with 33 ribosomal
proteins constitute the 50S ribosome subunit (Yamaguchi
and Subramanian 2000). Most genes coding for ribosomal
subunit proteins have been transferred to the nuclear gen-
ome. However, land plant plastomes commonly encode
twelve proteins for the small ribosomal subunits (rps
genes) and nine large ribosomal subunit proteins (rpl
genes). Loss of rps and rpl genes from plastomes is rare,
but has been detected in rosids (e.g. rpi22, rpl23, rps16; see
Jansen et al. 2007; Jansen et al. 2010; Magee et al. 2010 for
an overview) and a variety of non-photosynthetic or min-
imally photosynthetic angiosperms (Epifagus: dePamphilis
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and Palmer 1990; Conopholis: Y. Zhang and C. W.
dePamphilis, unpublished data; Cuscuta: Funk et al. 2007,
McNeal et al. 2007; Arceuthobium: Nickrent and Garcia
2009). Whether parasitic angiosperms are able to translate
proteins with a reduced set of ribosomal proteins or import
missing components is still unknown.

Other proteins associated with plastid ribosomes are a
nuclear encoded ribosome recycling factor and several
plastid ribosome specific proteins (PSRPs) that are unique
to plants and show no similarities to bacterial homologs
(Yamaguchi et al. 2000, Yamaguchi et al. 2003; Yamag-
uchi and Subramanian 2000; Sharma et al. 2010). The
assembly of the eubacterial-type ribosomes has been
studied intensively (reviewed in Moore 1998), but so far no
such studies are available for plastid ribosomes. Given the
high similarity of ribosomal RNA and most ribosomal
proteins between eubacteria and plastids, it can be assumed
that plastid ribosome assembly is similar to that of
eubacteria. Most of the ribosomal proteins of the 30S
ribosome subunit bind to the so-called S7-branch or are
dependent on other (plastid encoded) proteins for binding
(Grondek and Culver 2004). Thus, through analogy with
eubacterial ribosomal proteins, plastid encoded ones might
be divided into primary, secondary and tertiary binding
components of the 30S and the 50S (Table 1) ribosome
subunit according to their rRNA binding features.

Four proteins that are bound to the 30S ribosome sub-
units have no homologs in the eubacterial (i.e. E. coli-type)
ribosome and are nuclear-encoded PSRPs. Two additional
PSRP-proteins are bound to the 50S ribosome subunit
(Yamaguchi et al. 2000; Yamaguchi and Subramanian
2000). It remains unknown how PSRPs are assembled into
functional ribosome complexes. Recent analyses of PSRPs
suggest that they play a role in light-dependent regulation
of transcription/translation processes (Sharma et al. 2010).

One translation initiation factor assisting in the assembly
of the translation initiation complex is encoded by the plastid
gene infA (translation initiation factor; a total of three are
known from eubacterial translation mechanisms). InfA has
been lost multiple times independently during land plant
evolution. Although present in all bryophyte and fern lin-
eages, it is pseudogenized in the lycophyte Isoétes (Karol
et al. 2010), but appears to be functional in other lycophytes
(Selaginella: Tsuji et al. 2007; Huperzia: Wolf et al. 2005).
In angiosperms, multiple losses have been reported (sum-
marized in Jansen et al. 2007; Magee et al. 2010), accumu-
lating in lineages known for their non-canonical plastid
genome evolution (e.g. legumes; Millen et al. 2001).

clpP—a protein-modifying enzyme

High levels of photosynthetic gene expression coincide
with an enormous protein turn-over in plastids. Both
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maturation and protein degradation involve ATP-depen-
dent synthase/protease complexes that act as molecular
chaperones restoring or degrading damaged proteins
according to the severity of protein denaturation
(Wawrzynow et al. 1996; Adam et al. 2001; Adam and
Clarke 2002). In plastids, three different protease com-
plexes have been identified: F#s (filamentation temperature
sensitive protease), DegP/HtrA (high temperature require-
ment protease A) and Clp (Caseinolytic protease). Whereas
all subunits of the first two complexes are encoded by the
nuclear genome, CIpP is plastid encoded.

Plastid genes coding for protein subunits involved
in photosynthetic dark reactions and biogenesis

Genes for protochlorophyllide reductase subunits, proteins
for CO, uptake and cytochrome C biogenesis

Bryophytes, lycophytes, ferns and most gymnosperms
harbor genes for three subunits of a light-independent
protochlorophyllide reductase (chlB, chiL, chIN) in their
plastomes. This enzyme is involved in porphyrin and
chlorophyll metabolism (Reinbothe and Reinbothe 1996;
Karpinska et al. 1997). In gnetophytes, an aberrant gym-
nosperm group with still controversial phylogenetic posi-
tion (e.g. Zhong et al. 2010), chiB, chiL and chiIN are lost
to different extents (McCoy et al. 2008; Wu et al. 2009). In
Ephedra, sister group to the remaining Gnetales (Zhong
et al. 2010), all three genes are present and intact, whereas
Gnetum and Welwitschia possess pseudogenes of two
subunits and have lost the third (McCoy et al. 2008; Wu
et al. 2009). Different patterns in pseudogenization and chi-
gene loss in both genera might indicate relaxation of evo-
lutionary constraints to maintain functional copies, perhaps
due to import of as yet unidentified nuclear substitutes.

The gene ccsA (ycf5) encodes a protein mediating the
attachment of heme to c-type cytochromes during cyto-
chrome biogenesis (Xie and Merchant 1996; Saint-Mar-
coux et al. 2009). The gene is localized in the plastid SSC
region, and widely conserved among photosynthetic plants.
However, ccsA is lost from Epifagus (Wolfe et al. 1992),
and pseudogenized in Aneura mirabilis (Wickett et al.
2008a) The reading frame is, however, retained in all
Cuscuta species sequenced so far (McNeal et al. 2007;
Funk et al. 2007).

Land plant plastomes also encode a protein localized in
the inner envelope membrane (inner-envelope protein,
cemAlycf10; Sasaki et al. 1993b). Knockouts of the gene
cemA in Chlamydomonas severely affected the uptake of
CO,, while not affecting photosynthetic reactions (Rolland
et al. 1997). CemA is lost from the plastid genome of
Epifagus (Wolfe et al. 1992) and other Orobanchaceae
(S. Wicke et al., unpublished data), but present in Cuscuta
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(Funk et al. 2007; McNeal et al. 2007), and Aneura
(Wickett et al. 2008a).

rbecL

The rbcL gene encodes the large subunit of the ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO).
RuBisCO is estimated to be the most abundant protein on
earth (Ellis 1979). With the assistance of chaperones, it is
assembled from eight large subunits (RbcL) and eight
small subunits (RbcS). In contrast to red algae and Glau-
cophytes, Chlorophytes and Streptophytes do not possess a
functional gene copy for the small RuBisCO subunit (rbcS
gene) in the plastid genome. Instead, RbcS is encoded as a
nuclear gene family and targeted to the plastid (Clegg et al.
1997). In contrast to many other photosynthesis related
genes, rbcL is often retained in non-photosynthetic plants.
Putatively functional copies of rbcL are retained in several
representatives of Orobanchaceae, such as Lathraea (Del-
avault et al. 1996; Lusson et al. 1998), Orobanche cor-
ymbosa, O. fasciculata (Wolfe and dePamphilis 1997;
Leebens-Mack and dePamphilis 2002), most species of
Harveya (Leebens-Mack and dePamphilis 2002; Randle
and Wolfe 2005), and the non-photosynthetic liverwort
Aneura mirabilis (Wickett et al. 2008a). In other broom-
rape species, rbcL is only found as a pseudogene (as in
Epifagus: Wolfe et al. 1992, O. cernua: Wolfe and
dePamphilis 1997; Hyobanche, Randle and Wolfe 2005),
or has been completely lost (S. Wicke et al., unpublished
data). Retention, expression, and evidence for strong
purifying selection in hemiparasitic and some holoparasitic
plants have led to the speculation that rbcL is involved in
another, yet photosynthesis unrelated pathway (Leebens-
Mack and dePamphilis 2002; Randle and Wolfe 2005;
McNeal et al. 2007; see section “Plastid encoded genes for
photosynthesis unrelated pathways”).

Plastid genes for thylakoid complexes involved
in photosynthetic light reactions

Oxygenic photosynthesis requires efficient light harvesting
systems as well as an electron transport chain. The inner
(thylakoid) membrane of the plastid contains at least five
major protein complexes: photosystem I (PSI), photosys-
tem II (PSII), cytochrome by/f complex, ATP synthase and
an NAD(P)H-plastoquinone  oxidoreductase-complex
(summarized in Table 1; Gounaris et al. 1986; Nixon et al.
1989).

Photosystem I and Il (psa and psb genes)

In plants, light is harvested by two photosynthetic reaction
centers, PSI and PSII. These are localized in the thylakoid

membrane and form supercomplexes, each with its own light
harvesting complex that absorbs light via antenna molecules
(chlorophyll a/b, and carotenoids). The exact number of
proteins and cofactors associated with PSI and PSII super-
complexes is not known. PSII contains at least 17 subunits,
15 of which are encoded by the plastid genome (psbA, B, C,
D,E,F,H,LLJ,K,L, M, N, T, Z). These genes are scattered
across the LSC region. All plastid psb-gene products form
transmembrane helices (Nelson and Yocum 2006) and bind
to the subunits PsbA (syn. D1), B, C, and D (syn. D2; Ec-
kardt 2001). The gene products of psbN and psbZ (syn. ycf9)
supposedly interact with the chlorophyll-bound subunit
PsbC that reaches into the thylakoid lumen (Nelson and
Yocum 2006). The structure of PSI is less complex than that
of PSII, because it contains fewer polypeptides in its reaction
center. The genes encoding for its plastid encoded subunits
(psa genes) are found in the LSC region with the exception
of psaC, which is embedded in an operon of ndh-genes in the
plastome SSC region. Five subunits of plastid encoded PSI
(A, B, C, 1, J) are transmembrane proteins. The structurally
highly similar apoproteins PsaA and PsaB bind to the iron-
sulfur reaction center that mediates the transfer of excitated
electrons from plastoquinone to ferrodoxin (Nelson and
Yocum 2006). PsaC codes for a peripheral subunit on the
stromal side of PSI, which is directly involved in ferrodoxin
reduction by binding the terminal electron acceptor mole-
cules and linking them to the PSI iron-sulfur center (Fischer
et al. 1998). Subunits I and J are not essential for PSI
function (Bock 2007).

Photosystem assembly factors (ycf3, ycf4)

Both photosystems have been shown to be assembled with
the help of chaperones (Nelson and Yocum 2006). The
products of two plastid genes, ycf3 (orf62) and ycf4
(orf184), function as assembly factors for the photosystem
I complex (Boudreau et al. 1997a; Ruf et al. 1997; Naver
et al. 2001; Ozawa et al. 2009). Mutations in certain amino
acid residues that mediate protein—protein interactions led
to decreasing levels of PSI accumulation in the thylakoid
membrane, as did gene disruption experiments (Boudreau
et al. 1997a). Recently, it has been shown that Ycf3
interacts with at least one nuclear encoded protein during
the assembly of PSI (Albus et al. 2010). The naming of
both genes is somewhat misleading as it implies that their
function is still unknown. However, the transcripts of both
ORFs are obviously translated and the resulting polypep-
tides assist during the assembly of the photosystem I. We
therefore suggest renaming both genes to PSI assembly
factor I (pafl, the former ycf3) and II (pafll, the former
ycf4). The specifications I and II refer to the timing at
which they are thought to interact with PSI following the
model proposed by Ozawa et al. (2009).
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Cytochrome bgf complex (pet-genes) and ATP-Synthase
complex (atp-genes)

PSII and PSI are electrochemically connected in series by
the cytochrome bg/f complex. This is a functional complex
composed of nine different subunits plus several inorganic
cofactors, such as chlorophyll a, heme, f-carotene and an
iron-sulfur cluster (Baniulis et al. 2008).

Six subunits are plastid-encoded (petA, B, D, G, L, N).
These participate in electron transfer, generating a proton
gradient across the thylakoid membrane (Stroebel et al.
2003). Together with the nuclear encoded Rieske protein
(PetC), the gene products of petA (cytochrome f), petB
(cytochrome bg) and perD (subunit IV) form the core
complex that acts in the linear electron transport (Kurisu
et al. 2003). The remaining subunits (PetN, PetG, PetL plus
nuclear encoded PetM, PetH) are hydrophobic molecules
and are arranged peripherally around the core (Cramer
et al. 2006).

Plastid ATP Synthase is a multi-subunit complex com-
posed of nine different proteins generating ATP using the
proton gradient. These constitute an integral membrane
domain (Fyp-domain) and an extrinsic catalytic domain (F;-
domain) reaching into the stroma (Mccarty 1992). The F;-
subunit consists of five different polypeptides (a—¢), three
of which are encoded by the plastome (atpA, B, E). The Fy-
domain involved in proton translocation is built from three
different polypeptides (a—c) that are exclusively plastid
encoded (atpF, I, H; Vollmar et al. 2009).

All plastid-encoded genes for the photosynthetic appa-
ratus are highly conserved in land plant plastomes (with the
exception of ndhA-K, see below). Loss or pseudogeniza-
tion have only been reported in non-photosynthetic para-
sitic (Krause 2008) or myco-heterotrophic (Wickett et al.
2008a, b) plants.

Plastid NAD(P)H-complex (ndh-genes)

Electrons are recycled around PSI in different pathways.
One of which is carried out by a plastid NAD(P)H-dehy-
drogenase complex (Ndhl-complex) incorporated in the
thylakoid membrane (Casano et al. 2000; Nixon 2000).
This complex might also be involved in chlororespiration,
i.e. the process of respiratory electron transport in addition
to and/or in interaction with the photosynthetic electron
transport. The plastid Ndh1-complex non-photochemically
reduces and oxidizes plastoquinones. Furthermore, it may
also mediate the transport of electrons from PSI-ferro-
doxins back to PSII (reverse electron transport; Peltier and
Cournac 2002). Subunit composition appear to be highly
divergent between cyanobacteria and derived land plants
(reviewed in Suorsa et al. 2009). Together with several
partly uncharacterized subunits, Ndhl consists of distinct
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subcomplexes ranging from ca. 500 to over 1,000 kDa
(Suorsa et al. 2009).

Eleven subunits of the Ndhl-complex are encoded by
the plastid genome (ndhA, B, C, D, E, F, G, H, 1, J, K).
Plastid subunits A-D as well as H-K are homologous to the
eubacterial (mitochondrial) proton pumping complex I
(Friedrich et al. 1995). Experimental studies have shown
that plastid encoded Ndh1-subunits might not be essential
for plant survival in tobacco, although ndh-gene knockouts
did cause phenotypic alterations (Peltier and Cournac 2002
and references therein).

The plastid encoded genes of the Ndh1 are pseudogenized
or entirely lost several times during land plant evolution.
Given current data, these losses seem to be predominantly
connected to a heterotrophic lifestyle in land plants (para-
sitism, some forms of myco-heterotrophy). This includes the
myco-heterotrophic and non-photosynthetic liverwort Ane-
ura mirabilis (Wickett et al. 2008a), the photosynthetic or
partially non-photosynthetic parasitic Cuscuta (McNeal
et al. 2007; Funk et al. 2007), the non-photosynthetic para-
site Epifagus (dePamphilis and Palmer 1990), orchid species
(Chang et al. 2006; Wu et al. 2010), and some gymnosperms
(Wu et al. 2009) as well as some representatives of carniv-
orous Lentibulariaceae (B. Schiferhoff, S. Wicke, C. W.
dePamphilis and K. Miiller, unpublished data), and some
species of Geraniaceae (Blazier et al. 2011). Ndh genes are
also absent from several chlorophyte algae genomes (incl.
Chlamydomonas), but they are present in plastomes of the
closest relatives of land plants (Turmel et al. 2006; see also
Martin and Sabater 2010).

The Ndhl complex may also be associated with other
pathways, and might play an important role in adaptation to
environmental stress (reviewed in Suorsa et al. 2009).
Abiotic stress, such as nutrient starvation (in particular
nitrogen starvation), affected and up-regulated ndh-gene
expression indicating a putative regulating function of
Ndhl for the photosynthetic electron flow (Peltier and
Schmidt 1991). Due to the presence of nuclear genes of
Arabidopsis with strong similarities to ndh complexes and
plastid transit peptide sequences (Peltier and Cournac
2002), the existence of a second, nuclear encoded plastid
ndh complex (Nda2) has long been suspected. Recently, an
alternative form of an plastid localized Ndh-complex
involved in non-photochemical plastoquinone reduction
was identified (Sirpio et al. 2009; Takabayashi et al. 2009;
Ishida et al. 2009; Suorsa et al. 2009, 2010). The existence
of a second form might explain the multiple losses of Ndhl
genes from land plant plastomes. It may be that the func-
tion of an alternative Ndh-complex, or of fewer or
incompletely assembled Ndhl-subcomplexes is sufficient
for photosynthetic and related pathways in some, yet not
all, plants—in particular, if they exhibit a certain degree
of heterotrophy (e.g. myco-heterotrophy, parasitism,
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carnivory). It might be that nutrient supplies could affect
the activity of the Ndhl complex in a way that renders it
dispensable. In the light of expression analyses under
nitrogen starvation (Peltier and Schmidt 1991), the
responsible factor may include the type of nitrogen source
(nitrate vs. ammonium) or the excess of nitrogen (and/or
other nutrients or even assimilates) obtained from a host
plant. It is unclear whether this also accounts for the loss of
ndh genes from the plastomes of Pinaceae, Gnetophytes
and some Geraniaceae. As with many land plants, gym-
nosperms live in close association with mycorrhizae (Wang
and Qiu 2006). Thus, it may be possible that fungal asso-
ciations, or the fungal symbiont itself contributes to the fate
of ndh-genes. On the other hand, throughout land plants,
the presence of mycorrhizae and ndh loss appear to be only
imperfectly correlated; evidently, more data is necessary
before sound conclusions can be drawn, since other reasons
such as multiple independent functional gene transfers
must be considered as well (see also Blazier et al. 2011).

Plastid encoded genes for photosynthesis unrelated
pathways

Plastid genes for metabolic pathways unrelated to photo-
synthesis include proteins for fatty acid synthesis, and
sulfur metabolism.

AceD and the RuBisCO “‘shunt”

Acetyl-CoA carboxylase is another key enzyme in plastids
mediating the irreversible conversion of acetyl-CoA to
malonyl-CoA during the biosynthesis of fatty acids (Neu-
haus and Emes 2010). The beta subunit of this multimeric
enzyme (accD) is encoded in the LSC of the plastome in
Streptophytes (Sasaki et al. 1993a) and is considered to be
crucial for leaf development (Kode et al. 2005). The accD
gene has been lost from the plastid genome several times in
angiosperms (Jansen et al. 2007) where its function is
fulfilled by nuclear copies (Nakkaew et al. 2008).

Recently, RuBisCO has been found to be involved in a
previously unrecognized glycolysis bypassing reaction that
converts carbohydrates to fatty acids at low carbon cost in
oily seeds of white turnip (Brassica rapa, Schwender et al.
2004). This has been proposed as a likely reason for the
retention of a photosynthetic pathway in parasitic species
of Cuscuta that are fully heterotrophic, yet nonetheless
would benefit from the RuBisCO “shunt” to enable rapid
and efficient lipid synthesis (McNeal et al. 2009).

Genes related to sulfur metabolism

Liverworts contain at least two more protein coding genes
absent from most other land plants, cysA and cysT. CysA

(designated mbpX in the Marchantia polymorpha plas-
tome) shows functional domains similar to inner membrane
sulfate ABC (ATP binding cassette) transporters. Although
conservation of amino acid composition drops dramatically
towards the N-terminus, similarity searches suggest that
both genes might belong to sulfate related transport com-
plexes or sulfate permeases and thus may have a function
related to sulfate metabolism (Laudenbach and Grossman
1991). However, both subunits are lacking from most other
land plant plastid genomes (mosses, ferns, seed plants) and
the green algae Chlamydomonas (Sugiura 1992; Maul et al.
2002; Melis and Chen 2005; Lindberg and Melis 2008). In
hornworts, a cysA-like gene is present in the plastid gen-
ome, but it appears to be non-functional (Kugita et al.
2003).

Plastid genes of unknown function

yefl and ycf2

Green algae, including the closest relatives of Embryo-
phytes, possess an ftsH reading frame, which encodes a
metalloprotease. Predominantly at the carboxyl-terminus,
JtsH exhibits similarities to the largest, yet functionally
uncharacterized ORF (ycf2) in land plants (Wolfe 1994).
Nucleotide sequence similarity among land plant ycf2 is
extraordinarily low compared to other plastid-encoded
genes, being less than 50% across bryophytes, ferns, and
seed plants. Ycf2 harbors nucleotide binding sites typical
for green algal and eubacterial ftsH and CDC48 gene
families, which are involved in cell division processes,
proteolysis, and protein transport (Wolfe 1994). Further-
more, a “DPAL”-motif, shared by CDC48 and ycf2, is
highly conserved. In several angiosperm plastomes, a
smaller ORF, ycf15, is present directly downstream of the
ycf2 gene (Raubeson et al. 2007 and references therein). So
far, an exact function has not been assigned to the ycf15
gene product. Expression studies in spinach suggested that
ycfl5 might act as a regulator for Ycf2 on the RNA level,
but might not function on protein level (Schmitz-Linne-
weber et al. 2001). Consistent with an RNA-level function,
Raubeson et al. (2007) showed that ycf15 is not under
purifying selection as expected for most protein coding
sequences. A non-protein function might also account for
the conservation of the cryptic reading frame ycf68 found
in the IRs of several angiosperms (Raubeson et al. 2007)
and Aneura mirabilis (Wickett et al. 2008a). The persis-
tence of both ycf15 and ycf68 ORFs might be attributable to
their localization in the slowly evolving IR region.

Ycf1, the second largest gene in plastid genomes, codes
for a protein of approximately 1800 amino acids, yet its
precise function remains to be determined. Experimental
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data and comparisons of Chlamydomonas and angiosperm
ycfl homologs revealed conserved nucleotide binding sites
(Boudreau et al. 1997b). Based on these data, functions of
yefl and ycf2 have been hypothesized to involve ATPase-
related activities, chaperone-function, activity in cell divi-
sions (depicted from similarities with ftsH) and structural
remodeling and/or linkage of plastid chromosomes to
protein and/or membrane structures (Wolfe 1994; Boud-
reau et al. 1997b). Available data on gene expression in
tobacco show that, similar to ycf2, ycfl is expressed in
fruits (Drescher et al. 2000). Products of both genes are
essential for plant cell survival (Drescher et al. 2000;
Boudreau et al. 1997b). In most land plant lineages, ycf1
and ycf2 genes have elevated substitution rates and may
have undergone pseudogenization (Oliver et al. 2010; Wolf
et al. 2010a). For the most part, however, the 5’ end of both
genes are are relatively conserved, whereas other parts
seem to evolve more freely. In the case of ycf1, this might
be due to the co-localization of a replication origin (orig) in
this region (Kunnimalaiyaan and Nielsen 1997). This
implies that both genes seem to undergo at least weak
selective constraints. Analyses regarding differences in
d,/d, ratios and mutational hotspots within the genic region
might corroborate the assignment of a function to both
these genes. The losses observed in several photosynthetic
lineages, however, raise the question whether they really
carry out essential functions in all plants. Complete loss of
both ycf1 and ycf2 from the plastomes of some (but not all)
derived monocot lineages and putative pseudogenization in
other plants (Downie et al. 1994) are in contrast to the high
structural conservation in parasites (dePamphilis and Pal-
mer 1990; Wolfe et al. 1992; McNeal et al. 2007). This
might in fact point towards a function decoupled from
photosynthesis. Nuclear encoded and plastid targeted pro-
teins similar to Ycfl/Ycf2 were not found in lineages
where both genes have been lost from the plastid genome,
such as Poaceae (Downie et al. 1994).

Conclusions

In terms of structure, land plant plastid chromosomes
evolve much more slowly than their mitochondrial or
nuclear counterparts. This structural conservatism might be
a result of the common organization of genes in operons
that are conserved features between cyanobacteria, green
algae and land plants. Other relevant factors include the
mode of plastid transmission, the activity of highly effec-
tive repair mechanisms, as well as the rarity of plastid
fusion and fission. The latter property is one of the major
differences relative to mitochondrial genomes that have

@ Springer

been shown to frequently fuse, and in doing so, provide
opportunities for exchanging divergent genome copies.
Most plastome rearrangements appear to be restricted to
lineages that show one or more of the following charac-
teristics: (i) aberrant behavior of the inverted repeat region
(expansion, contraction, loss), (ii) biparental plastid
transmission; (iii) a high frequency of small dispersed
repeat sequences, (iv) heterotrophic lifestyle (parasites,
myco-heterotrophs). Among land plants, angiosperms
show the greatest variation in plastome structure, although
distortion of gene synteny by rearrangements and gene
loss is still rare compared to the genomes of other cell
compartments. Interestingly, plastid chromosome restruc-
turing appears to occur most commonly in the more
derived clades of a given lineage (leptosporangiate ferns,
Funariales within mosses, Pinaceae and Gnetophytes
within gymnosperms, eudicots and Poales within angio-
sperms). It will be interesting to see whether similar pat-
terns occur in liverwort plastome evolution. The gene
content of land plants does not appear to have dramatically
changed, and only few gene losses or putative functional
transfers (chl, cys) might have taken place in the course of
land plant evolution. The retention of photosynthetically
relevant genes might be attributable to several factors. On
the one hand, functional gene transfer is a complex issue
since it involves the transfer itself and the evolution of
transit peptides; thus, it is expected to be rare. On the
other hand, most protein subunits encoded by the plastome
(in particular photosynthesis relevant proteins) harbor
trans-membrane proteins, and might therefore be difficult
to import (as known from mitochondria). Finally, many
gene products are required at high expression levels and at
early developmental stages (e.g. translation/transcription
apparatus, photosynthesis genes) and their retention might
be selected for.
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