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ABSTRACT

The Chloroplast Genome Database (ChloroplastDB)
is an interactive, web-based database for fully
sequenced plastid genomes, containing genomic,
protein, DNA and RNA sequences, gene locations,
RNA-editing sites, putative protein families and align-
ments (http://chloroplast.cbio.psu.edu/). With recent
technical advances, the rate of generating new organ-
elle genomes has increased dramatically. However,
the established ontology for chloroplast genes and
gene features has not been uniformly applied to all
chloroplast genomes available in the sequence data-
bases. For example, annotations for some published
genome sequences have not evolved with gene nam-
ing conventions. ChloroplastDB provides unified
annotations, gene name search, BLAST and down-
load functions for chloroplast encoded genes and
genomic sequences. A user can retrieve all ortholog-
ous sequences with one search regardless of gene
names in GenBank. This feature alone greatly facilit-
ates comparative research on sequence evolution
including changes in gene content, codon usage,
gene structure and post-transcriptional modifica-
tions such as RNA editing. Orthologous protein
sets are classified by TribeMCL and each set is
assigned a standard gene name. Over the next few
years, as the number of sequenced chloroplast gen-
omes increases rapidly, the tools available in
ChloroplastDB will allow researchers to easily identify
and compile target data for comparative analysis of
chloroplast genes and genomes.

INTRODUCTION

As the site in the eukaryotic cell where photosynthesis takes
place, chloroplasts are responsible for much of the world’s
primary productivity, making chloroplasts essential to the

lives of plants and animals alike. The oxygen in our atmo-
sphere, all agricultural commodities and fossil fuels such as
coal and oil are ‘products’ of photosynthesis (1). Other import-
ant activities that occur in chloroplasts (and several types of
non-photosynthetic plastids) include the production of starch
(2), certain amino acids and lipids (3,4), some of the colourful
pigments in flowers (5), and key aspects of sulfur and nitrogen
metabolism (6,7).

All plastids studied to date contain their own distinct gen-
omes derived from a cyanobacterial ancestor that was captured
early in the evolution of the eukaryotic cell (8). Although
much smaller than the nuclear genome, chloroplast genomes
typically contain ~110-120 unique genes including conserved
open reading frames (ORFs) annotated as ycf genes (hypothet-
ical chloroplast ORF) (9). Additional possible coding regions
are designated as ORFs. These are typically annotated with
the number of amino acids encoded (e.g., ORF1995) (10).
Some algae have retained a large chloroplast genome with
>200 genes, whereas the plastid genomes from non-
photosynthetic organisms may retain only a few dozen genes.

Chloroplast gene sequences have been widely used as gen-
etic markers for plant and algal phylogenetic studies for nearly
two decades (11,12). Whereas one or a few genes have been
the focus of study most of this time [rbcL, atpB, matK; but
see studies by Graham and Olmstead (13,14)], rapid growth
in the number of chloroplast genome sequences is now
making it possible for a wide range of phylogenetic issues
to be addressed with genome scale datasets (15,16). For
population-level studies, polymorphic regions for targeted
sequencing can be identified through comparison of complete
genome sequences for exemplar taxa (17). Chloroplast gen-
ome sequences are also being used to address a wide range of
evolutionary questions about changes in gene content and gene
order (18), the dynamics of insertion and deletion events (19),
intergenomic gene transfer (20) and photosynthetic evolution
(21). The development of genetic transformation of chloro-
plasts has been very exciting (22) and the list of target species
will increase as the locations and flanking sequences for inter-
genic spacer regions are identified from an expanding number
of chloroplast genome sequences (23). Genome-scale
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functional analyses, including investigations of plastid tran-
scriptomes and proteomes are also progressing rapidly (24).

Several bioinformatic resources provide information on
organelle genomes, and tools specific for these genomes
have been developed (25). The standard repository for full
genome sequences, the GenBank, EMBL and DDBJ nucleot-
ide sequence databases, currently includes 44 complete plastid
genomes sequenced since 1986. The NCBI GenBank genome
section lists entire organelle genome sequences submitted to
the database and reviewed by NCBI staff (26). GOBASE (27)
also maintains a list of sequenced organelle genomes. A stand-
ardized nomenclature for plastid-encoded protein genes is
available through the UniProt database (http://www.expasy.
org/txt/plastid.txt). A web-based annotation tool, DOGMA,
provides a graphical user interface to annotate draft and fin-
ished organelle genomes based on sequence similarity
searches and RNA secondary structure prediction (28). The
program GRAPPA has been used for phylogenetic analysis of
chloroplast gene order changes (29). A plastid gene order
database was developed with uniform gene names for 32 plas-
tid genomes (30). In addition, 500 primers are now available
for targeted PCR amplification of sequences from chloroplast
genomes (http://bfw.ac.at/200/1859.html).

A prerequisite of future research is the accessibility of well-
annotated, easy-to-use sequence data. However, several major
limiting factors exist including flat file presentation of annot-
ated organelle genomes, lack of standard data structure for
relational databases, and non-uniform annotation quality.
Errors in the annotation typically persist in the standard data-
bases (e.g. the gene rp/2 is annotated as rp/2 in the Oryza
sativa chloroplast DNA, a human error). As a heritage of early
annotations, gene name variants, unidentified ycfs and ORFs,
and unannotated genes are present in some genomes. Given
the ubiquity of phylogenetic studies based on plastid gene
sequences, the flat file format makes search and data retrieval
cumbersome.

RNA editing, a post-transcriptional process that alters spe-
cific RNA bases prior to translation, is common in the chloro-
plast genomes of some land plants (31). RNA editing can
result in the creation of start codons and removal of stop
codons, as well as making radical amino acid substitutions
that would not be predicted based on the DNA sequence
alone. Accurate genome annotation and inference of protein
sequences often cannot be accomplished without knowledge
of RNA editing sites (e.g. in the chloroplast DNA of Antho-
ceros formosae, Adiantum capillus-veneris and Zea mays).
The pace of new data generation and large-scale analyses
demand a better integration of resources for chloroplast gen-
ome research. ChloroplastDB is a relational database with a
user-friendly interface and tools to aid the analysis of chloro-
plast genome sequences.

DATA MANAGEMENT AND ORGANIZATION

ChloroplastDB was designed using a MySQL database struc-
ture (Figure 1). The tables in the relational database store data
related to the genes, nucleotide sequences and annotated pro-
tein sequences for coding sequences (CDS). The databases
contain fully sequenced plastid genomes obtained from
the NCBI RefSeq section (http://www.ncbi.nlm.nih.gov/
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genomes/static/euk_o.html). All genes, including protein-
coding genes, tRNA, rRNA, hypothetical ORFs (ycf, ORF)
were parsed and incorporated into the database.

The standard process for extracting and storing data was
carried out as follows:

(i) A GenBank XML file containing a plastid genome
sequence is downloaded. The XML format ensures better
integrity of parsed data than GenBank flat files.

(i1) Usingin-house XML parsers written in Perl, the XML data
is extracted, filtered through quality control steps and for-
matted properly. The cleaned data are stored in the data-
base in a form conducive to efficient data transactions.

(iii) Using the coordinates from the features (CDS, tRNA,
rRNA, intron), the corresponding nucleotide sequence
is extracted from the genome and stored in the database.

(iv) Inafew instances when a parsed sequence lacks appropriate
annotation, the GenBank records are updated with expert
annotations after automatic processing of the XML file.

(v) Three BLAST databases are created: one for the whole
genome sequence from all organisms, a second for the
annotated protein sequences of all organisms in the data-
base, and a third for the generated nucleotide CDS from
each organism.

When new sequences are added to the database, the proteins
are sorted into potentially orthologous sets or ‘tribes’ using
tribeMCL (32). First, a sequence similarity profile is obtained
by all-against-all BLAST on the protein sequences at a thresh-
old of 1E-3. The BLAST output is fed to tribeMCL,
which then generates a list of tribes representing protein fam-
ilies. This output is parsed and the tribes are updated in the
database.

The quality control procedure is crucial in maintaining the
integrity and accuracy of the extracted data. There appear to
be some irregularities with the GenBank annotations. The
genomic region spanning one gene and the gene features
(CDS, tRNA, rRNA) share the same gene name. In case of
overlapping and nested genes, the annotation for the second
(or nested) gene could be attributed to the first gene, resulting
in confusions. Also, there are instances where the gene names
are not included in the feature description. We have avoided
the problem by using the coordinates for each ‘gene’ feature
as the primary reference, and after that, the coordinates of
other features are checked and assigned new gene names. For
example, rpsI2 is a trans-spliced gene containing three exons
in the angiosperm chloroplast genome. The first exon is loc-
ated ~30 kb upstream of the second exon, and on the opposite
coding strand. The initial parsed record for the gene contained
many other genes nested in the intron region. After the filtering
step, those nested genes were dissociated from the name
‘rps12’ and assigned to their appropriate names. If no gene
name was found, the feature was deemed to be an ‘ophan’ and
assigned a local name (starting with ‘Icl_anno’).

When the GenBank annotation included RNA edited sites,
both the location and type of edits were extracted from the
record. The information was used to generate an edited pseu-
dosequence that was stored with a list of edited sites. Just 38
genes with 541 annotated, experimental verified sites from
A.formosae and Physcomitrella patens are included in the
current GenBank annotations. RNA editing has been reported
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Figure 1. ChloroplastDB overview. (A) Database structure and relationship of data tables. PK: primary key. FK: foreign key. (B) Data flow and filtering steps to

ensure the high quality of data stored in the database.

in other plants including tobacco, maize and Adiantum chloro-
plast DNA. Because the GenBank record does not contain a
standard feature to store the RNA editing information, some
edited sites were not reported while others were reported as
exceptions since the protein sequence did not match concep-
tual translation of the protein coding gene. To maintain quality
and consistency of the data, we report annotated locations and
the edited mRNA sequence.

THE CHLOROPLAST GENOME DATABASE
INTERFACE

Web user interfaces, developed using Perl CGI scripts, interact
with the above mentioned data repository and provide users

with basic sequence analysis tools (Figure 2). ChloroplastDB
can be queried by gene name, and query results are returned in
a table with links to individual genes. The BLAST similarity
search was implemented for search against whole genome,
extracted proteins or extracted CDS. Sequences returned in
BLAST searches can be exported to a fasta file. A user can also
browse the list of organisms and all genes by specified sub-
types (tRNA, rRNA and protein-coding) from each organism.
The set of extracted genes vary from 56 in a non-
photosynthetic parasitic plant, Epifagus virginiana, to 254
in the red alga Porphyra purpurea, including duplicate
genes that are present in the genome. Tribes represent putat-
ively orthologous genes across organisms, which can be down-
loaded to construct multiple sequence alignments. Together,
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Anthoceros formosae

0455 rbcL ArthCp030 Arabidopsis thaliana
0570 rbcL AtbeCp030 Atropa belladonna
0709 rbeL CafeCp031 Calycanthus floridus var. glaucus
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Gene Name Organism

rbcl Acorus calamus
rbelL Adiantum capillus-veneris
rbcl Amborella trichopoda
rbell Anthoceros formosae
rbcl Arabidopsis thaliana
rbecl Atropa belladonna
rbel Calycanthus floridus var. glaucus
rbcl Chaetosphaeridium globosum
rbel Chlamydomonas reinhardtii
rbcl Chlorella vulgaris

D Blast Result
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Hit Definition Bits E-value

832 Adiantum capillus-veneris(rbcl AdcaCp032) Genbank Acc:NC 004766.1 945 0.0

03393 Psilotum nudum(rbcl PsnuCp032) Genbank Acc:NC 003386.1 914 0.0

208 Anthoceros formosae(rbcl AnfoCp036) Genbank Acc:NC 004543.1 914 0.0

(ol i rbcl ChglCp045) Genbank
8 AcciNC 004115.1 912 0.0
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(‘select All)
All Protein
Organism Name Coding |tRNA |rRNA |Intron
Genes
Gene

10 Acorus calamus 135 85 38 8 25
20 Adiantum capillus-veneris 130 87 35 8 42
3p Amborella trichopoda 133 86 36 8 48
4 0 Anthoceros formosae 136 91 37 8 50
50 Arabidopsis thaliana 117 87 37 8 48

Figure 2. Examples of analysis using the ChloroplastDB web interface. (A) Homepage of the database. (B) Search results for the gene ‘rbcL’. (C) The gene view page
linked to search result for each gene, including mRNA editing information. (D) BLAST results, with options to download sequences from the BLAST search. (E)
Putative orthologous gene set listed as ‘“Tribes’. (F) The organism page presents a summary of genomes and extracted features in the database for batch download.

these web interfaces provides a workbench for query, search,
and sequence compilation and analysis. The various functions
are seamlessly linked for a smooth user experience.

HOW TO USE THE CHLOROPLAST DATABASE
Gene search

The basic query page allows a user to search for individual
gene of interest. For example, search of ‘rbcL’ returns all rbcL
gene entries, in which two copies are from Nephroselmis
olivacea since they are duplicated and located in the inverted
repeats. Each gene is then linked to a gene view page. The
gene view displays the gene name, organism, coordinates on
the genome, exon boundaries, and DNA or protein sequences.
Annotated RNA edits are highlighted with colours for easy
identification.

BLAST

Customized BLAST searches against nucleotide CDS, pro-
teins or genomic sequences allows a researcher to quickly

identify novel sequences, to construct alignments and to annot-
ate chloroplast genes. The returned entries are linked to
respective gene view page or the whole genome record in
NCBI. Selected list of entries can be exported as fasta
sequences. A user can also run BLAST against the Arabidopsis
or rice proteome to identify nuclear encoded homologs of
chloroplast genes.

Tribes

An important feature of this database is pre-computed ortho-
logous protein sets, which could be used for phylogenetic
analysis. The tribes present a uniform, automatic classification
of chloroplast proteins using MCL clustering on all-by-all
BLAST search results. With few exceptions, all other tribes
represent orthologous gene sets, and a standard name is dis-
played for each tribe according to the UniProt list of plastid
and cyanelle genes. The paralogous psaA and psaB are highly
similar duplicate genes (BLAST E-value < 1.0E—150) which
are grouped together in a single tribe. In contrast, rapidly
evolving ycfl genes are split into three tribes including
seed plant, ferns plus bryophytes and algal orthologues. Tribes
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also become a discovery tool for unannotated proteins. For
example, ORF288 in hornwort, A.formosae, was sorted to the
cysT tribe, together with an unannotated orthologous sequence
from liverwort, Marchantia polymorpha. We also provide pre-
computed protein and DNA alignments for each tribe.

Whole genome comparison and batch sequence retrieval

The plastid genomes from land plants, green algae, red algae
and Apicomplexian represents a great range of diversity of the
organelle genomes. The organism page presents direct link to
the GenBank genome sequences, and ability to download gen-
ome sequences and genes by organisms. The user can use the
downloaded sequence for organism specific analysis, or com-
parison for a specific type of sequences across organisms.

FUTURE PROSPECTS

Over the next few years, the growth of full organelle genome
sequences will provide new opportunities for whole-genome
comparative analyses. Cross-species investigations of
genome-wide structural evolution, context-specific substitu-
tion processes (33), RNA editing, gene regulation and gene
function will be more tractable for organelle genomes than
much larger and more complex nuclear genomes. Organelle
genomes may be an ideal proving ground for methods of
analysis being developed to understand genome and gene
order evolution. The mission of ChloroplastDB is to pro-
mote comparative analyses of plastid genomes by addressing
the community need for better, uniform annotation, quick
sequence retrieval and homology search tools. The function-
ality of ChloroplastDB will grow as new genomes, alignments
and other analyses are added, gene clustering techniques are
improved, and visualization tools with gene order browsers are
developed.
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